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which describes the two-dimensional Euclidean black hole, and its mirror dual N = 2

Liouville theory. We analyze the orientifolds of these theories from several complementary

points of view: the parity symmetries of the worldsheet actions, descent from known AdS3

parities, and the modular bootstrap method (in some cases we can also check our results

against known constraints coming from the conformal bootstrap method). Our analysis

extends previous work on orientifolds in Liouville theory, the AdS3 and SU(2) WZW models

and minimal models. Compared to these cases, we find that the orientifolds of the two

dimensional Euclidean black hole exhibit new intriguing features. Our results are relevant

for the study of orientifolds in the neighborhood of NS5-branes and for the engineering of

four-dimensional chiral gauge theories and gauge theories with SO and Sp gauge groups

with suitable configurations of D-branes and orientifolds. As an illustration, we discuss

an example related to a configuration of D4-branes and O4-planes in the presence of two

parallel fivebranes.
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1. Introduction

Orientifolds play an important role in string theory (for a review see [1]). They appear in

non-perturbative dualities and in many applications with clear phenomenological interest,

especially since the advent of flux compactifications [2]. By nature, orientifolds are pertur-

bative objects associated to the physics of unoriented strings that can be studied explicitly

in perturbative string theory with the use of standard conformal field theory (cft) tech-

niques. Their properties become richer in curved backgrounds where one has to face on the

level of the worldsheet the complexities of a non-trivial cft. Related cft techniques were

successfully applied to study Calabi-Yau compactifications at Gepner points in a series of

papers [3 – 8].

In this paper we want to study the orientifolds of two related theories: the N = 2

Liouville theory and the supersymmetric SL(2,R)/U(1) coset. These theories are known

to be dual [9, 10] and are mapped to each other by mirror symmetry [11]. From the cft

point of view they are interesting as non-trivial (yet integrable) examples of irrational

conformal field theories and provide a useful testing ground for ideas that may generalize

to other irrational cfts. From the point of view of string theory, it is known that the

supersymmetric coset SL(2,R)/U(1) appears naturally as part of the worldsheet cft that

describes string propagation in the vicinity of Calabi-Yau singularities [12, 13] and the
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near-horizon region of fivebranes in a double scaling limit [14, 15]. String theory in these

situations is related holographically to a non-local, non-gravitational theory known as Little

String Theory [16 – 18] and is in general non-critical.

Adding branes to this context gives another interesting application. It is well known

that one can realize gauge theories with varying dimensionality and amount of supersymme-

try in Hanany-Witten setups where one considers appropriate configurations of D-branes,

orientifolds and NS5-branes (see [19, 20], the review [21] and references therein). Vari-

ous non-trivial properties of gauge theories can be studied in this way. Certain Hanany-

Witten setups can be studied directly in pertubative string theory by placing D-branes in

the non-critical string theory of the previous paragraph, which involves, as we said, the

SL(2,R)/U(1) coset as part of its definition. D-branes in the N = 2 Liouville theory and

the SL(2,R)/U(1) coset have been constructed with cft methods in [22 – 27] and will be

summarized in section 2. This formalism was applied in the context of six-dimensional

non-critical strings in [28] where it was shown explicitly how to realize four-dimensional

N = 1 SQCD (see also [29]), and extended to models with supersymmetry breaking [30].

Further aspects of this theory (most notably Seiberg-duality) were analyzed in this context

in [31].

Orientifolds in N = 2 Liouville theory and the supersymmetric SL(2,R)/U(1) coset

can be studied with similar cft methods. One can obtain important insights about these

orientifolds from the corresponding analysis in bosonic Liouville theory [32], AdS3 [33]

and the non-supersymmetric and supersymmetric minimal models [34 – 36]. Orientifolds in

N = 2 Liouville theory have been discussed previously in [37]. The results of that paper

will be reproduced here with some important additions as a special case of our analysis.

In order to set up our notation and to gather certain facts for later use, we devote

section 2 to a brief review of open and closed strings in AdS3, SL(2,R)/U(1) and N = 2

Liouville theory. Sections 3, 4 and 5 discuss different classes of orientifolds in the N = 2

Liouville theory and the supersymmetric SL(2,R)/U(1) coset and contain the main results

of this paper.

In this work, we use three different approaches to uncover information about orien-

tifolds: the explicit form of the allowed symmetries that can be combined with worldsheet

parity, descent of known AdS3 parities to SL(2,R)/U(1) and a direct modular bootstrap

approach (in some cases, we can also check our results against known conformal bootstrap

constraints). Each approach has its merits and its disadvantages, but comparison of the

information obtained in this way yields important checks and helps complete the picture.

In section 3 we classify a set of consistent worldsheet parities. This is most straightfor-

ward in the N = 2 Liouville theory because of the simplicity of the worldsheet action. This

approach gives naturally O2- and O1-planes that extend towards the weak coupling region

of the theory. One of the interesting results of this analysis is a parity that can be used to

construct non-critical, non-tachyonic type 0′B string vacua. The explicit construction of

these vacua will appear in a companion paper [38]. We also analyze parities that descend

from AdS3. This point of view gives a natural set of orientifolds with the geometry of O0-,

O1- and O2-planes on SL(2,R)/U(1) .

In section 4 we proceed to analyze with exact cft methods the crosscap wave-functions
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of two B-type parities on SL(2,R)/U(1) . The exact result reproduces the semiclassical

asymptotic Klein bottle amplitude based on the known action of the parities, but also

reveals the presence of an additional localized orientifold contribution. We propose that

the latter corresponds to one of the O0-planes that was found in section 3. Hence, we find

that the cft gives naturally not a single O0- or an O2-plane, but a specific combination

of the two.1 We provide a physical interpretation of this result in the context of Hanany-

Witten setups.

In the final section, we discuss the crosscap wave-function of an A-type orientifold that

gives an O1-plane on SL(2,R)/U(1) . We obtain this result by descent from an Euclidean

AdS2 orientifold in Euclidean AdS3. The AdS2 orientifold can be obtained from an H2

orientifold with an SL(2,C) rotation. This provides and independent derivation of the

AdS2 crosscap wavefunction in [33].

Three appendices supplement the material of the main text. In the first two appendices

we summarize some of our conventions and list the known D-brane wave-functions for quick

reference. In the third appendix we derive the P-modular transformation properties of

the identity character which will be instrumental in the modular bootstrap approach of

section 4. The derivation appearing in appendix C is a generalization of the one appearing

in [37] but with some important differences.

Note added. We are aware that Sujay Ashok, Sameer Murthy and Jan Troost have been

exploring independently a related subject.

2. Strings and branes in SL(2,R)/U(1) & N = 2 Liouville

We start with a brief review of the SL(2,R)/U(1) conformal field theory and its mirror

N = 2 Liouville theory. This will help us set up our conventions and gather some important

facts for later use. For more details on the material reviewed in this section we refer the

reader to the original references cited below.

Closed strings in AdS3. String theory on AdS3 [40] with an ns-ns two-form flux is an

exact solution of string theory, whose background fields read, in global coordinates

ds2 = α′k
[
dρ2 + sinh2 ρdφ2 − cosh2 ρdt2

]
, H = 2α′k cosh ρ sinh ρ dρ ∧ dφ ∧ dt (2.1)

with a constant dilaton. The global SO(2,2) symmetry of this space-time is enhanced to

an affine ŝl(2, R)l× ŝl(2, R)r since we can take the worldsheet theory as the wzw model for

the group SL(2,R) . To be more precise, AdS3 space-time with a non-compact global time t

corresponds to the universal cover of SL(2,R) .2 In order to obtain superstring backgrounds,

one can define the super-wzw model for SL(2,R) by adding three free worldsheet fermions

of signature (−,+,+). The central charge of this N = 1 superconformal theory is c =

9/2 + 6/k.

1This reminds of the D2-branes of [22] which exhibit a localized D0-brane charge.
2For some applications it is useful to consider the single cover of SL(2,R) for which the time is periodic

t ∼ t + 2π.
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Primary states of the model are classified in terms of ŝl(2, R) representations, that can

be twisted by an outer automorphism called spectral flow [41, 42]. Their conformal weights

read, in the ns-ns sector:

∆sl = −j(j − 1)

k
− wm +

kw2

4
, ∆̄sl = −j(j − 1)

k
− wm̄ +

kw2

4
, (2.2)

where (m, m̄) label the primaries of the elliptic sub-algebra (J3, J̄3) and w is the spectral

flow parameter. Space-time energy is given by E = m+m̄ whereas the angular momentum

(conjugate to φ) is n = m − m̄ ∈ Z. The unitary closed string spectrum is made of

continuous representations with j ∈ 1
2 + iR+ and discrete representations in the range 1

2 <

j < k+1
2 . We refer the reader to appendix A for more details about these representations.

Closed strings in SL(2,R)/U(1) . The SL(2,R)/U(1) conformal field theory [43 – 46]

is obtained from SL(2,R) as a gauged wzw model. One possibility is to perform an axial

gauging of the elliptic subalgebra, corresponding to the time-translation symmetry t →
t + λa. This symmetry has no fixed point, hence the background is non-singular

ds2 = α′k
[
dρ2 + tanh2 ρdφ2

]
, Φ = Φ0 − 2 ln cosh ρ , (2.3)

and has the interpretation of a two-dimensional Euclidean black hole, the cigar. Using

the standard gauging construction, the primary states of the coset can be obtained from

SL(2,R) primaries with m + m̄ = 0, with conformal weights (for ns-ns primaries)

∆cig = ∆sl +
m2

k
= −j(j − 1)

k
+

(n + kw)2

4k
(2.4a)

∆̄cig = ∆̄sl +
m̄2

k
= −j(j − 1)

k
+

(n − kw)2

4k
(2.4b)

The periodicity φ ∼ φ + 2π of AdS3, see eq. (2.1), is inherited by the coset. At the

asymptotic ρ → ∞ region, φ becomes a canonically normalized free boson at radius
√

α′k.

One identifies n as the momentum of this boson, and w as its winding number. Correlators

of this theory can be computed by descent from the corresponding quantities in H+
3 [47, 48].

The leading order solution of the background fields (2.3) is exact to all orders in 1
k

as the superconformal symmetry is enlarged to N = 2 [49, 50]. However it receives non-

perturbative corrections in the form of a ”winding condensate” [9 – 11, 51, 52]. In the

asymptotic region ρ → ∞ where the fields ρ, φ and their fermionic superparters ψ± =

ψρ ± iψφ are free one can write the winding condensate as a worldsheet interaction of the

form3

δS =
k

2π

∫
d2z e−kρ

[
iµ ψ+ψ̄−eik(φL−φR) + iµ† ψ−ψ̄+e−ik(φL−φR)

]
. (2.5)

Another consistent theory is defined by a vector gauging that refers to the symmetry

φ → φ+λv and gives the constraint m−m̄ = 0. Since ρ = 0 is a fixed point of this isometry,

the leading order metric ds2 = α′k[dρ2 + cotanh2 ρdφ̃2] is a singular geometry known as

3Henceforth we will denote the right-moving fields with a bar, or with an explicit L or R subindex to

distinguish between left- and right-movers.
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k integer k arbitrary

Axial gauging R =
√

α′k R =
√

α′k

Vector gauging R = ∞ or R =
√

α′k R = ∞
N = 2 Liouville R = ∞, R =

√
α′k or R =

√
α′/k R = ∞, R =

√
α′/k

Table 1: Various SL(2,R)/U(1) theories

the trumpet. As the geometric interpretation breaks down it is usually more appropriate

to view this model as an N = 2 Liouville theory [10, 11, 51], defined as a free N = 2 linear

dilaton theory perturbed by a momentum condensate T-dual to (2.5), i.e. with φL − φR

replaced by φ̃ (and ψ̄± by ψ̄∓). We will discuss this model in more detail below.

Contrary to the axial gauging, the vectorially gauged SL(2,R)/U(1) coset is sensitive

to the cover of SL(2,R) [53]. Starting with the universal cover of AdS3 we obtain a non-

compact coordinate φ̃ — this coordinate is the time coordinate t in disguise. Starting with

the single cover, the field φ̃ corresponds in the asymptotic region ρ → ∞ to a free boson

at radius
√

α′k. This defines a consistent cft at the non-perturbative level only if the

level k is an integer, otherwise the momentum condensate dual to (2.5) is not periodic.

For irrational k, the only consistent theory with a momentum condensate and finite radius

is obtained with T-duality from the cigar (2.3); in that case the radius of the transverse

coordinate is
√

α′/k.4 This model cannot be obtained as a gauging of AdS3; however, for

integer k it is the Zk orbifold of the trumpet at radius
√

α′k. We summarize the various

possibilities in table 1.5 The last two rows correspond to the same models, provided the

radii are equal.

D-branes and boundary cft. Various D-branes have been constructed, using the tools

of boundary conformal field theory, in H+
3 [54, 55] and later in Lorentzian AdS3 [56]. They

are classified by the gluing conditions imposed on the ŝl(2, R) currents [57]. Extending

the coset construction to bcft, corresponding branes have been obtained in SL(2,R)/U(1)

[22, 23]. These results are mainly in agreement with other approaches, such as modular

bootstrap [24 – 26] and conformal bootstrap based on the N = 2 superconformal alge-

bra [27]. In what follows we summarize the branes that will be most interesting for the

analysis below. The corresponding wave-functions, i.e. the coefficient of the one-point

functions on the disc, are summarized in app. B.

D0-branes. The D(-1)-brane (i.e. point-like in space-time) of AdS3 can be obtained with

the current algebra gluing conditions J3 = −J̄3|z=z̄, J± = −J̄∓|z=z̄ using the conventions

of [55]. Its main property is that the spectrum of open strings attached to it contains only

the identity representation of ŝl(2, R). It is located at ρ = 0 and t = 0, π on the single

cover, i.e. the brane is made of two copies. D0-branes in the coset SL(2,R)/U(1) can be

obtained from the D(-1)-brane of AdS3 by descend. Corresponding D0-branes in N = 2

Liouville theory exist by mirror symmetry.

4In the N = 2 Liouville terminology, this is the “minimal radius” solution.
5For rational k there are other possibilities that will not be quoted here, see e.g. [24].
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Let us consider first the D0-brane of non-compact N = 2 Liouville theory, or non-

compact ”trumpet” background. In the N = 2 terminology this is an A-type brane. The

quantization of the brane position at φ̃ = 2πr/k with r ∈ Z has its origin in the N = 2

Liouville potential that breaks the translation symmetry along φ̃ to a Z subgroup generated

by φ̃ → φ̃ + 2π/k. It is quite analogous to the ”special points” at the boundary of the disc

in SU(2)/U(1) [58].6 Using the conventions of app. A, we can write the annulus amplitude

in this theory (in the ns sector), for open strings stretched between D0-branes sitting at

φ = 2πr/k and 2πr′/k, as:

Ar r′(t) = chI(r
′ − r; it)

[
0

0

]
. (2.6)

It contains only one identity character of the N = 2 superconformal algebra.

The cigar cft (T-dual to the minimal radius N = 2 Liouville theory) is obtained

by modding out the Z subgroup of the translation symmetry that is not broken non-

perturbatively. Since this symmetry has no fixed point one can obtain the boundary state

by summing over the images under the orbifold action. As a result, the brane carries no

label (apart from the usual labels characterizing the fermionic boundary conditions). It is

a D0-brane localized at the tip ρ = 0 with B-type boundary conditions. One obtains the

annulus amplitude by summing (2.6) over r ∈ Z. The closed string one-point functions on

the disc in all fermionic sectors are summarized in app. B.

Finally, for integer k one can consider the trumpet at radius
√

α′k, the vector gauging

of the single cover. In this case, one mods out the non-compact model by the subgroup

φ̃ → φ̃+2π. The annulus amplitude for the D0-brane is obtained from a partial summation

of (2.6) as r = r̂ + kZ. One can repackage the result using the extended characters defined

in app. A. The result in the ns-ns sector is

Avect.
r̂ r̂′ (t) = ChI(r̂

′ − r̂; it)

[
0

0

]
. (2.7)

Summing over r̂ ∈ Zk gives the annulus amplitude for the cigar written with extended

characters.

D1-branes. The D1-branes of the two-dimensional black hole descend from the AdS2

branes of AdS3 [57]. They are characterized by A-type boundary conditions of the N = 2

superconformal algebra (sca). Their embedding equation is

sinh ρ sinh(φ − φ̂) = sinh ρ̂ (2.8)

with two continuous parameters (ρ̂, φ̂). In the asymptotic cylinder region, these branes

have the shape of two antipodal D1-branes at φ = φ̂, φ̂ + π. The open string spectrum

comprises only of continuous representations, with a non-trivial density of states [22, 23]

associated with the boundary two-point function. The relevant one-point function on the

disc is given by eq. (B.4). In the non-compact trumpet / N = 2 Liouville theory, one

obtains a D2-brane with a worldvolume ρ > ρ̂ endowed with a magnetic field.

6While the SU(2)/U(1) geometry is conformal to the interior of the unit disc, the trumpet is conformal

to the exterior of the disc.
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ρ

φ

t

Figure 1: Geometries of various D-branes on the single cover of AdS3 (upper picture) and in the

cigar (lower picture). From left to right: AdS2 brane with ρ̂ = 0, H2 branes with σ̂ = 0, dS2 brane

and D(-1)-branes. Roughly speaking, the cigar coset is obtained by projecting onto an ”horizontal

slice” of the cylinder and the trumpet onto a ”vertical slice”.

D2-branes. Finally, one can define space-like branes in AdS3 with H2 geometry. In H+
3

these branes are equivalent to AdS2 branes by SL(2,C) rotation. By descent they give D2-

branes on the cigar, with B-type boundary conditions, carrying a magnetic field [22]. The

latter is quantized because the brane carries a D0-brane charge near the tip of the cigar.

In the non-compact trumpet / N = 2 Liouville theory, the AdS2 branes give D1-branes

with embedding equation sinh ρ sin(φ̃ − ϕ̂) = sin σ̂. In this case, the quantization of σ̂ is

interpreted as the requirement that the brane ends on one of the special points at ρ =

0 [59] (the parameter ϕ̂ is also quantized). However, these branes seem to be inconsistent

for irrational k since their open string spectrum contains negative multilplicities [23]. A

different class of D2-branes, related to dS2 geometries in Lorentzian AdS3 (this class of

branes cannot descend from branes in H+
3 ), have been constructed using modular bootstrap

methods in [26] and conformal bootstrap methods in N = 2 Liouville theory in [27] (for a

dbi analysis of these branes see [60]). D2-branes in this class are free of the abovementioned

problems since their open string spectrum is made of continuous representations only. They

exhibit a double-sheeted structure that covers the domain ρ > ρmin and are labeled by a

continuous parameter that characterizes the minimal distance ρmin from the tip of the

cigar and a Z2-valued Wilson line. Their boundary state wave-functions are summarized

in app. B. It should be pointed out that these D2-branes are related to D2-branes of the

first category with an overcritical magnetic field [60].

We sketch the brane geometries in figure 1. Note that other types of branes, whose
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geometrical and physical interpretation has not yet been elucidated, were considered in [61,

62].

3. Parities and the geometry of orientifolds

In this section we discuss the orientifolds of the supersymmetric SL(2,R)/U(1) coset and

the N = 2 Liouville theory from the perspective of the parity symmetries. This point of

view allows for a first look at the semiclassical features of the orientifolds and provides a

useful guide for the exact analysis of the next section. First, we classify a set of A- and

B-type parities in N = 2 Liouville theory. Then we repeat the exercise with parities in

SL(2,R)/U(1) inherited from AdS3. The simultaneous analysis of parity symmetries in

both theories is useful, because certain orientifolds are easier to analyze in one theory than

the other. Of course, at the end of the day the orientifolds of these theories are related by

mirror symmetry. We comment on this correspondence at the end of this section.

Parities in worldsheet theories with N = (2, 2) supersymmetry. In a two-

dimensional qft with N = (2, 2) supersymmetry one can define a natural set of parity

symmetries (we recommend [36] for an excellent discussion of the general situation). Here

it will be useful to highlight the main points of these symmetries. The two bosonic co-

ordinates of the N = (2, 2) superspace will be denoted as (z, z̄) and the four fermionic

coordinates as θ, θ̄ and θ†, θ̄†. As above, we denote the right-movers with a bar and reserve

the dagger for the notation of complex conjugate quantities. The N = 2 superconformal al-

gebra generators will be denoted as T (z), J(z), G±(z) for the left-movers with an analogous

notation for the right-movers.

There are two basic parities in a theory with N = (2, 2) supersymmetry that reverse

the worldsheet chirality (exchanging the left- and right-movers) while preserving the holo-

morphy of the N = 2 supersymmetry. They are known as A- and B-type7 and are defined

by the worldsheet action

ΩA : (z, z̄, θ, θ̄, θ†, θ̄†) → (z̄, z,−θ̄†,−θ†,−θ̄,−θ) , (3.1a)

ΩB : (z, z̄, θ, θ̄, θ†, θ̄†) → (z̄, z, θ̄, θ, θ̄†, θ†) . (3.1b)

They act on the supercurrents as

ΩA : G±(z) → Ḡ∓(z̄) , ΩA : Ḡ±(z̄) → G∓(z) , (3.2a)

ΩB : G±(z) → Ḡ±(z̄) , ΩB : Ḡ±(z̄) → G±(z) (3.2b)

and on the R-symmetry currents as

ΩA : J(z) → −J̄(z̄) , ΩA : J̄(z̄) → −J(z) , (3.3a)

ΩB : J(z) → J̄(z̄) , ΩB : J̄(z̄) → J(z) . (3.3b)

The two parities are exchanged by mirror symmetry. The same thing happens with bound-

ary conditions, where mirror symmetry exchanges A- and B-type branes.

7These parities are analogous to A- and B-type boundary conditions as we will see more explicitly below.
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One can generalize the above parities by combining them with internal discrete sym-

metries τ of the theory (we will present explicit examples of such symmetries in N = 2

Liouville theory and its mirror dual below). In this way one can formulate more general

A- and B-type parities of the form

PA = τA · ΩA , PB = τB · ΩB (3.4)

which are still acting on the supercurrents as in (3.2a), (3.2b) and on the R-symmetry

currents as in (3.3a), (3.3b) provided, of course, that the internal symmetries preserve the

R-symmetry currents. A general example of such A- and B-type parities are the (α, β)

parities

PAα,β
= e−iαJ−iβJ̄ · ΩA , PBα,β

= e−iαJ−iβJ̄ · ΩB , (3.5)

where one combines the basic worldsheet parities ΩA, ΩB with U(1)R rotations. It should

be pointed out that for general values of α and β these parities are not involutive (i.e.

P2 6= 1). Also they are non-geometric, because they treat the left- and right-movers

asymmetrically. The latter can have interesting consequences for the resulting theory; we

will mention an interesting example below.

Parities in N = 2 Liouville theory. We are now in position to examine the A- and

B-type parity symmetries of the N = 2 Liouville action8 (we set α′ = 2)

S =
1

8π

∫
d2z d4θ ΦΦ̄ +

µ

2π

∫
d2z dθdθ̄ e

−

q

k
2
Φ

+
µ†

2π

∫
d2z dθ†dθ̄† e

−

q

k
2
Φ̄

(3.6)

written in terms of a chiral N = 2 superfield

Φ = r + iϕ + i
√

2θψ+ + i
√

2θ̄ψ̄+ + 2θθ̄F + · · · (3.7)

r denotes the radial direction and ϕ the angular direction. This theory is superconformal

provided the background charge satisfies Q =
√

2/k. In the asymptotic r → ∞ weakly

coupled region, the left and right U(1)R currents read, in terms of the component fields:

J = ψ+ψ− + iQ∂ϕ (3.8a)

J̄ = ψ̄+ψ̄− + iQ∂̄ϕ (3.8b)

The potential coming from the superfield action (3.6) is similar to the interaction

term (2.5) after the change of normalization of the fields (ρ, φ) = (2k)−
1
2 (r, ϕ) and T-

duality. In this alternate description of the SL(2,R)/U(1) theory, the first term in the

asymptotic expansion of the cigar geometry, eq. (2.3), comes as a a correction to the

Kähler potential (3.6)

δS = µcig

∫
d2z d4θ e

−Φ+Φ†
√

2k . (3.9)

8A related discussion of Landau-Ginzburg models can be found in [36].
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The basic A- and B-type parities ΩA and ΩB leave the fermionic measure dθdθ̄dθ†dθ̄†

invariant and act on the N = 2 Liouville chiral superfield Φ as9

ΩA : Φ(z, z̄, θ, θ̄) →
{
Φ(ΩA(z, z̄, θ, θ̄))

}†
, ΩB : Φ(z, z̄, θ, θ̄) → Φ(ΩB(z, z̄, θ, θ̄)) . (3.10)

Hence, if we write the N = 2 Liouville action (3.6) as

S = SKähler + SLiouville(µ) + S†
Liouville(µ

†) (3.11)

we can easily verify that the Kähler (kinetic) part of the action is invariant under both ΩA

and ΩB , but the superpotential parts are transforming as

ΩA : SLiouville(µ) → SLiouville(µ)† , (3.12)

ΩB : SLiouville(µ) → SLiouville(−µ) . (3.13)

Consequently, ΩA is a true symmetry of the N = 2 Liouville theory only when µ ∈ R.10

On the other hand, ΩB cannot be a true symmetry unless we take µ = 0, i.e. unless we

drop the N = 2 Liouville interaction term to be left with a free linear dilaton theory.

The N = 2 Liouville theory has two obvious involutive parities that can be used to

define B-type orientifolds. These are a parity s that shifts the angular coordinate ϕ by half

a period, i.e.

s : ϕ → ϕ + πQ (3.14)

and the fermionic parity (−)F̄ where F̄ is the right-moving worldsheet fermion number.

Under the parities PB = s · ΩB and P ′
B = (−)F̄ · ΩB the full N = 2 Liouville action is

invariant.11 (−)F̄ can also be combined with ΩA to give a consistent A-type parity.

Given the above symmetries of the classical N = 2 Liouville theory

PA = ΩA , P ′
A = (−)F̄ · ΩA , PB = s · ΩB , P ′

B = (−)F̄ · ΩB (3.15)

we can define the corresponding (α, β) U(1)R rotated versions as

PAα,β
= ΩAα,β

, PAα,β
= (−)F̄ ·ΩAα,β

, PBα,β
= s ·ΩBα,β

, PBα,β
= (−)F̄ ·ΩBα,β

. (3.16)

For general α and β these parities are non-involutive.

The non-perturbative consistency of these parities requires that they leave invariant

the cigar interaction (3.9). One can check that this requirement is trivially satisfied by all

of the above parities.

9By definition ΩB takes the fermion bilinear ψǫψ̄ǭ → −ψǭψ̄ǫ, ǫ, ǭ = ±1. The standard Ω worldsheet

parity acts on the fermions as ψ± → ψ̄±, ψ̄± → −ψ± and leaves the fermion bilinear ψǫψ̄ǭ invariant. The

relation between Ω and ΩB is therefore ΩB = (−)F̄ Ω, where F̄ is the right-moving worldsheet fermion

number.
10This reduction of the closed string moduli space to a real subspace is a usual feature of A-type orien-

tifolds in vacua with N = (2, 2) worldsheet supersymmetry [36, 6].
11It is worthwile mentioning that the parity PB = s · ΩB has no analogue in sine-Liouville theory (the

bosonic cousin of N = 2 Liouville theory) since the potential is odd under s.
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Action in R
2,2 AdS3 global coordinates Fixed submanifold

τ1 X2 → −X2 φ → −φ φ = 0, π (AdS2)

τ2 X3 → −X3 t → −t t = 0 (H2)

τ3 X1 → −X1 , X2 → −X2 , X3 → −X3 t → −t , φ → φ + π ρ = t = 0 (point)

τ4 X0 → −X0 , X2 → −X2 , X3 → −X3 t → t + π , φ → −φ none

Table 2: Geometric parities in the AdS3 wzw model

In the context of type 0 non-critical strings the parity PB0,0 , as well as P ′
B0,π

, leads

to an interesting theory of non-oriented type 0 strings without closed string tachyons,

no fermions and no massless tadpoles, which is a cousin of the type 0′B theory in ten

dimensions. In the context of two dimensional type 0 strings based on N = 1 Liouville

theory it was pointed out in [63, 64] that the type 0′B projection is not allowed, because it

projects out the N = 1 Liouville interaction. In N = 2 Liouville theory we see, however,

that this is no longer the case and the type 0′B projection is indeed possible. A detailed

analysis of this theory will appear elsewere [38].

Geometric parities in AdS3 and its cosets. In this subsection we take an orthogonal

route to look at the possible geometric parities in the axial SL(2,R)/U(1) coset, i.e. the

cigar geometry given by eq. (2.3). For the moment, let us forget about the details of the

worldsheet fermions and supersymmetry and look first at the parity symmetries of the

bosonic SL(2,R) WZW model, following [65]. Possible orientifold projections combine the

worldsheet orientation symmetry and a Z2 isometry. The isometries of the manifold are

most easily described by embedding AdS3 in R
2,2 with the equation:

(X0)2 + (X3)2 − (X1)2 − (X2)2 = α′k . (3.17)

We will consider geometric Z2 symmetries that are combinations of the parities Xi → −Xi

for i = 1, . . . 4. The global coordinates on the group manifold, see the metric (2.1), are

defined as

X0 ± iX3 =
√

α′k cosh ρ e±it , X1 ± iX2 =
√

α′k sinh ρ e±iφ . (3.18)

In the wzw model the parity symmetry has to reverse the orientation of the target space

manifold in order to preserve the Wess-Zumino term
∫

(g−1dg)∧3, i.e. the coupling to the ns-

ns two-form. In view of the applications to the coset we don’t restrict ourselves to parities

with an invariant timelike hypersurface. We give the various inequivalent choices (i.e.

which are not related one the the other by the isometries of the manifold) for the orientifold

geometry in table 2. In the last case the orientifold action has no fixed submanifold. It is

an involution only on the single cover of the group manifold, for which t ∼ t + 2π.

Let us also define other parities that do not show up in the above analysis since they

are not strictly speaking geometric. It is well known in a free U(1) theory parametrized by

a boson t that the parity t → −t can be performed together with a winding shift, i.e. a one-

half translation of the coordinate T-dual to t [35]. We can consider a similar modification
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of the τ2 parity, provided we start with the single cover of AdS3.
12 It defines a parity τ̃2.

Geometrically, instead of a pair of H2 orientifold planes at t = 0 and t = π with the same

tension, we get a pair of orientifolds with opposite tension. Similarly, one can define a τ̃3

parity corresponding to a pair of O(-1) planes of opposite tension.

Let us consider now the axial coset SL(2,R)/U(1) , i.e. the cigar, and analyze how the

above-mentioned parities are realized. The six AdS3 parities give orientifold planes with

the following geometries:

• For τ1 the geometry is similar to that of a straight D1-brane with ρ̂ = 0, which is

localized at φ = 0, π, see lower-left picture in figure 1.

• For τ2 the O-plane covers all the cigar, similar to a D2-brane with σ̂ = 0.

• For τ3 the geometry is similar to that of the D0-brane of the cigar, i.e. it is localized

at ρ = 0.

• For τ4 we obtain something similar to the O1-plane above, but with an extra winding

shift φL − φR → φL − φR + π.

• For τ̃2 we obtain again a geometry that resembles that of a D2-brane with σ̂ = 0,

however the parity acts with an extra one-half rotation along the transverse direction

φ.

• For τ̃3 the geometry is similar to that of τ3.

The parity τ4 is identified in the cigar with the combination of the inversion φ → −φ

and a winding shift by realizing that the translation symmetry along t, which amounts

to the translation symmetry in the vector coset (i.e. the trumpet) becomes the winding

symmetry in the axial coset. However, we know that this symmetry is broken at the non-

perturbative level by the winding condensate (2.5). Hence, we conclude that this parity is

not consistent in SL(2,R)/U(1) . All other parities leave the winding condensate invariant,

in agreement with the analysis done in N = 2 Liouville as we will see in the next paragraph.

In the vector coset, or N = 2 Liouville theory, the parities τ1 and τ3 give respectively

an O2-plane and a localized A-type orientifold whose geometrical nature is not well-defined.

The parity τ2 gives a pair of antipodal O1-planes of the same tension. On the single cover

of the trumpet, one can define a parity τ̃2 as we saw above, which includes a winding shift.

It gives a pair of antipodal O1-planes of opposite tension. On the universal cover there is

of course no such parity, or better saying it cannot be distinguished from the parity τ2.

The case of the trumpet/N = 2 Liouville at minimal radius, which is well-defined for

any k, cannot be obtained directly from AdS3 by gauging; however it is T-dual to the cigar.

Since in this model the winding is conserved one can define parities similar to τ̃2 and τ̃3,

that include a winding shift.

12Indeed in this model the winding around the time direction, which corresponds to the difference between

left- and right-movers spectral flows, is conserved.
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The supersymmetric SL(2,R)/U(1) and its parities. As we saw previously, the

supersymmetric coset SL(2,R)/U(1) at level k can be realized by a suitable gauging of the

supersymmetric SL(2,R) wzw model. To make the fermionic action of the above parities

more transparent, we recall the basic features of the gauged action. It has the well-known

form

Scoset = Swzw,k(A, g) +
i

2π

∫
d2z Tr

(
Ψ̄DΨ̄ + ΨD̄Ψ

)
, (3.19)

and depends on the gauge field A, the SL(2,R) elements g and Ψ, a Dirac fermion which

can be conveniently arranged in a Hermitian 2 × 2 matrix13

Ψ =

(
0

ψ+

ψ−

0

)
. (3.20)

Swzw,k is the bosonic gauged wzw action at level k + 2, whose explicit form will not be

needed here (see e.g. [50]), and the covariant derivative DµΨ = ∂µΨ + [Aµ,Ψ]. In terms of

the global coordinates (t, ρ, φ) the generic SL(2,R) element g is written as14

g = ei(φ+t)σ3/2eρσ1
ei(t−φ)σ3/2 =

(
eit cosh ρ

e−iφ sinh ρ

eiφ sinh ρ

e−it cosh ρ

)
, (3.21)

where σi (i = 1, 2, 3) are the usual Pauli matrices

σ1 =

(
0

1

1

0

)
, σ2 =

(
0

i

−i

0

)
, σ3 =

(
1

0

0

−1

)
. (3.22)

The axial U(1) gauge transformation of interest under which (3.19) is invariant has the

form

A → hAh + hdh , g → hgh , Ψ → hΨh , Ψ̄ → hΨ̄h , (3.23)

with h = eitσ3/2. It turns out that the gauged theory has N = (2, 2) supersymmetry.

Now one can easily check that the fermionic completion of the parities that appear in

table 2 is

τ1 : (A, g,Ψ) → (σ2Aσ2, σ2g
−1σ2, σ2Ψσ2) , (3.24a)

τ2 : (A, g,Ψ) → (σ3Aσ3, σ3g
−1σ3, σ3Ψσ3) , (3.24b)

τ3 : (A, g,Ψ) → (A, g−1,Ψ) , (3.24c)

τ4 : (A, g,Ψ) → (−σ1Aσ1,−σ1g
−1σ1,−σ1Ψσ1) (3.24d)

To obtain orientifolds of the supersymmetric coset we need to combine the above

symmetries with the worldsheet parity ΩB . Immediate candidates are the parities τiΩB

(i = 1, 2, 3) (P4 will not be considered, because, as explained above, it is non-pertrubatively

inconsistent). However, not all of these symmetries are automatically well-defined. As

explained in subsection (4.2.1) of [36] for the SU(2)/U(1) case, there are possible anomalies

from the fermionic sector. In our case, one can check that the parities P2 = τ2ΩB, P3 =

13A similar expression holds for the right-movers.
14In this parametrization g is actually written as an SU(1,1) element.
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τ3ΩB and P̃2 = τ̃2ΩB, P̃3 = τ̃3ΩB, which are B-type parities, are anomaly free, but the

parity P1 = τ1ΩB, which is A-type, has an anomaly. The anomaly can be cancelled by

combining P1 with (−)F̄ . Additional parities can be obtained as U(1)R rotated versions of

the above anomaly free parities (see eq. (3.5)).

As a final comment, notice that it is possible to define another set of consistent orien-

tifold projections as Pi(−)F̄ = τiΩ, P̃i(−)F̄ = τ̃iΩ (i = 2, 3). These parities are such that

the fermion bilinears ψǫψ̄ǭ (ǫ, ǭ = ±) are invariant (see comments in the footnote around

eq. (3.10)). For concreteness we will discuss in the following section mostly the parities

with ΩB, but will indicate what changes for the parities with Ω.

Comparison of SL(2,R)/U(1) and N = 2 Liouville parities. In the previous sub-

section we analyzed the parities of the N = 2 Liouville theory / SL(2,R)/U(1) coset from

two different point of views. First, following a general discussion of N = (2, 2) field theo-

ries, secondly as geometric parities inherited from AdS3. The asymptotic analysis in N = 2

Liouville theory gives a nice and simple picture of the action of orientifolds that extend to

the asymptotic semiclassical region. The discussion of orientifolds in AdS3 and its cosets

gives, on the other hand, an intuitive geometric picture and also points towards the exis-

tence of localized O0-planes on the cigar (those associated with the parities P3, P̃3). In

the next section, we will see how the exact CFT analysis blends the above information in

a picture of mixed O2/O0-planes.

In general, we expect that for each A(B)-type orientifold presented in N = 2 Liouville

theory there is a corresponding B(A)-type orientifold in the supersymmetric SL(2,R)/U(1)

coset related to it by mirror symmetry and vice versa. For instance, one can associate the

N = 2 Liouville A-type parity PA with the cigar B-type parity P2. However, it is not

always straightforward to match parities one-to-one, since we determined the parities on

each side with different methods and some of these methods capture only the features of

the asymptotic region where the worldsheet theory is weakly coupled.

4. B-type orientifolds on the cigar: O2/O0-planes

In this section we present a detailed analysis of the properties of the orientifold planes

arising from the B-type cigar parities P2, P̃2 and P3, P̃3 which appeared above. For

simplicity, we will concentrate only on parities of the supersymmetric SL(2,R)/U(1) coset,

but it should be kept in mind that for each of the orientifolds presented here there is a

mirror orientifold in N = 2 Liouville theory whose properties can be deduced in a very

similar manner. The properties of the B-type orientifolds will be analyzed from several

complementary points of view. Using the explicit knowledge of the parity symmetries we

compute directly the volume diverging asymptotic Klein bottle amplitude. The result of

this semiclassical calculation gives a non-trivial check for the exact crosscap wave-functions

that we derive in the ensuing by modular bootstrap from the Möbius strip amplitude of

the D0-brane. Another check comes by comparison with the known conformal bootstrap

constraints of [37]. The geometry of the orientifolds presented here exhibits some intriguing

features which can be read off the crosscap wave-functions. In particular, we will see that
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the Möbius strip amplitudes lead naturally to an intricate combination of O2- and O0-

planes, which incorporate a similtaneous action of P2 and P3 parities or P̃2 and P̃3 parities.

We expect these features to have an interesting relation to the physics of orientifolds in

the presence of NS5-branes in the context of Hanany-Witten setups. At the end of each

subsection, we present for completeness the Möbius strip amplitudes of open strings on

D2-branes and comment on the action of the parities on the open string densities.

4.1 An O2/O0-plane

We begin with the analysis of the orientifold associated to the B-type parity P2. We will

call this orientifold OB . In the previous section, we argued by descent from AdS3 that P2

gives an O2-plane which is spacefilling on the cigar. We will soon see that the full story is

more involved.

In order to familiarize ourselves with the properties of this orientifold we will first

analyze the Klein bottle amplitude in the asymptotic linear dilaton region of the cigar

where the worldsheet theory becomes the free theory of two bosons and two fermions.

The asymptotic Klein bottle amplitude. The torus partition function of the su-

persymmetric cigar cft has been discussed in a series of papers [66 – 68, 26]. It receives

several contributions: a piece which involves the continuous representations with a non-

trivial density of states and a piece with the contributions of the discrete states that are

exponentially supported near the tip of the cigar. The details of the fermion contribution

depend on the gso projection; in this paper we will focus for concreteness on the simplest

type 0B diagonal torus partition sum. Furthermore, for the purposes of the present exer-

cise we will be interested only on the contribution of the continuous representations. The

density of these states has an ir divergence at zero radial momentum, which is associated

with the infinite volume of the asymptotic cylinder region of the cigar. This will be the

contribution of interest here. It is captured by the asymptotic free linear dilaton theory

and takes the simple form (for the explanation of our conventions and the definitions of

the relevant SL(2,R)/U(1) characters see app. A)

T (τ) = V
∑

a,b∈Z2

∑

n,w∈Z

∫ ∞

0
dP chc

(
P,

n + kw

2
; τ

) [a

b

]
c̄hc

(
P,

n − kw

2
; τ̄

)[a

b

]
, (4.1)

where V is the regularized volume of the asymptotic cylinder and chc(P,m; τ)
[

a
b

]
the con-

tinuous character with a, b ∈ Z2 the standard fermionic indices labeling the spin structures

on the torus.

The P2 parity acts on the bosonic part simply as Ω and therefore on the ns-ns coset

primaries with momentum n and winding w as

P2 : |P, n,w〉 → |P, n,−w〉 . (4.2)

On the worldsheet fermions it acts as:15

P2 : ψ± → −ψ̄± , ψ̄± → −ψ± . (4.3)

15When P2 acts on the product of two fermions it takes ψǫψ̄ǭ → −ψǭψ̄ǫ, ǫ, ǭ = ±1.
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Combining these facts it is straightforward to determine the asymptotic expression for the

Klein bottle amplitude

KOB
(t) = V

∑

a∈Z2

∑

n∈Z

∫ ∞

0
dP chc

(
P,

n

2
; 2it

) [a

1

]
. (4.4)

As expected from the B-type nature of the parity only momentum modes contribute in

eq. (4.4).

For later purposes it will be useful to perform an S-modular transformation (τ → − 1
τ )

on (4.4) to obtain the Klein bottle amplitude in the transverse crosscap channel. With

the use of the S-modular property of the continuous characters, eq. (A.3), we deduce the

crosscap channel expression

K̃OB
(t) =

kV

4

∑

a∈Z2

e
iπa
2

∑

ℓ∈Z

chc

(
0, kℓ;− 1

2it

)[
1

a

]
. (4.5)

The only contribution comes from the zero radial momentum modes, which is expected

since we perform an asymptotic free field analysis. Furthermore, we see that the orientifold

sources winding modes in the r-r sector with even winding w = 2ℓ. In a little while, we

will reproduce this result from an exact modular bootstrap analysis that is not restricted

to the asymptotic linear dilaton region of the theory.

Repeating the above exercise with the parity P2(−)F̄ would give similar relations, the

important difference being that in (4.4) states in the ns and r sector would appear. Hence,

we would obtain an orientifold that sources winding modes in the ns-ns sector.

Möbius strip amplitude for the D0-brane. The diagonal modular invariant theory

that we are considering here has four different D0-branes characterized by two fermionic

labels a, b ∈ Z2. The open string spectrum between two D0-branes with labels
[

a1

b1

]
and

[
a2

b2

]
can be derived easily from the annulus amplitude

Ah

a1
b1

i

;
h

a2
b2

i(t) = δ
(2)
b1,b2

∑

r∈Z

chI(r; it)

[
a1 − a2

b1

]
, (4.6)

where only the identity representation appears. For the precise definition of the identity

representation character see app. A.16 Since the τ2 symmetry of SL(2,R) has no obvious

action on the open strings attached to the D0-branes of the cigar it is sensible to postulate

the open string channel Möbius strip amplitude, for an open string sector corresponding

to a D0-brane of fermionic labels [a b]:

M[ a
b ]

(t) = δ
(2)
b,1

∑

c∈Z2

∑

r∈Z

ĉhI(r; it)

[
1

c

]
. (4.7)

As usual with Möbius strip amplitudes the character that appears on the rhs of this

equation is a hatted character (see app. C), i.e. it corresponds to Tr(Ωe−2πtHo) in the

16To compare with another terminology used in the literature, one may identify the brane
ˆ

0
0

˜

with the

boundary state |NS, +〉, the brane
ˆ

1
0

˜

with the boundary state |NS,−〉,
ˆ

0
1

˜

with |R, +〉 and
ˆ

1
1

˜

with |R,−〉.
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appropriate open string sector. The overall Kronecker δ symbol has been inserted by using

the input of the asymptotic Klein bottle amplitude (4.5) which shows that the orientifold

sources only r-r fields in the bulk. This will be justified in a minute when we derive the

crosscap state and compare with the asymptotic Klein bottle amplitude (4.5) to see how

everything fits nicely together with the postulate (4.7). Also, notice that the amplitude is

independent of the a fermionic label of the D0-brane.

Getting the crosscap wave-function. Given the Möbius strip amplitude (4.7) we can

determine the full crosscap wave-function of the orientifold with modular bootstrap. In the

transverse channel, the lhs of (4.7) can be expressed as an overlap of the crosscap state

– that we call |OB〉 – and the D0-brane boundary state |D0;
[a

b

]
〉. Performing a P-modular

tranformation on the rhs of eq. (4.7) we find

〈
D0;

[a

b

] ∣∣∣e−
2π
t

Hc

∣∣∣OB

〉

= δ
(2)
b,1

∑

c∈Z2

∑

w∈Z

∫ ∞

0
dp Pc;(p,kw/2)

I;[ 1
c ]

ĉhc

(
p,

kw

2
;− 1

4it

)[
1

c

]
+ discrete , (4.8)

where P⋆
⋆ are the matrix elements of the P-modular transformation for the hatted identity

character
∑

r∈Z
ĉhI(r; τ)

[ 1
c

]
in the r sector.17 The derivation of these elements is given in

detail in app. C. In the rhs of eq. (4.8), we denote by “discrete” the contribution of discrete

representation characters. We will not deal explicitly here with this contribution because it

can be obtained from the coupling of the continuous states by analytic continuation. The

full explicit modular transformation can be found in eq. (C.26)

The overlap on the lhs of (4.8) can be re-expressed in terms of the known D0-brane

wave-functions ΦD0;[a
b ]

(p,m) and the crosscap wave-functions ΨOB

(
p,m;

[
a
b

])
as

〈
D0;

[a

b

] ∣∣∣e−
2π
t

Hc

∣∣∣OB

〉
=

∑

c∈Z2

∑

w∈Z

∫ ∞

0
dp ΦD0;[ a

−b ]

(
−p,−kw

2

)
ΨOB

(
p,

kw

2
;

[
b

c

])
×

× ĉhc

(
p,

kw

2
;− 1

4it

)[
b

c − a

]
+ discrete. (4.9)

From eqs. (4.8), (4.9) we deduce the crosscap wave-function18

ΨOB

(
p,

kw

2
;

[
b

c

])
= δ

(2)
b,1

Pc;(p,kw/2)

I;[ 1
c−a ]

ΦD0;[ a
−1 ]

(
−p,−kw

2

) . (4.10)

Substituting the explicit formulae of apps. C and B we obtain the final expression

17The P-matrix implements the transformation τ → − 1
4τ

. It allows to transform the Möbius amplitude

from the open to the closed channel. We refer the reader e.g. to the review [69] for more details.
18Similar results can be obtained for the parity P2(−)F̄ . Most notably, in (4.10) one should replace the

fermionic index 1 by 0, because in this case the orientifold sources states in the ns sector. Furthermore,

in deriving (4.10) one should use fermionic Ishibashi states in the ns-ns sector for which the natural nor-

malization is |C〉NSNS± = e±i π

4 eiπ(L0∓ 1

4
)|B〉NSNS± [8]. |C〉 and B〉 are respectively crosscap and boundary

Ishibashi states.
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ΨOB

(
p,

kw

2
;

[
b

c

])
= 2

√
kδ

(2)
b,1 e

iπ(c−1)
2 ν−ip Γ(−2ip)Γ(1 − 2ip

k )

Γ(1 − ip + kw
2 )Γ(−ip − kw

2 )
×

× cosh(πp)
δ
(2)
w,0 e

iπw
2 sin πkw

2 cosh πp
k + δ

(2)
w,1 e

iπ
2

(2c−1+w) sinhπp sinh πp
k

sinhπ(p + ikw
2 ) sinh π(p − ikw

2 )
(4.11)

which, as expected, is independent of the fermion number a, i.e. independent of the

D0-brane that we use to perform the modular bootstrap. By definition, the wave-

function (4.11) gives the one-point functions on RP2 of all the fields in the continuous

representation that are sourced by the orientifold OB. The discrete couplings can be deter-

mined from the analyticity properties of (4.11). Indeed, taking the analytic continuation

p = −i(j − 1
2) in eq. (4.11) one finds poles on the real j-axis whose residues correspond to

the couplings to discrete representations. This can be checked explicitly using the discrete

P-matrix elements (C.25) computed in app. C.

A first non-trivial check of (4.11) can be obtained by comparing with the asymptotic

Klein bottle amplitude (4.5). In the p → 0 limit the wave-function (4.11) simplifies con-

siderably. The contribution of the odd winding numbers drops out completely — this is

one of the first requirements of (4.5) – and the remaining expression becomes

ΨOB

(
0,

kw

2
;

[
b

c

])
=

2
√

k

π
e

iπ
2

(c+1+w)Γ(0)δ
(2)
b,1 δ

(2)
w,0 . (4.12)

The divergent Γ(0) gives the volume divergent factor V in (4.5). With a simple calculation

one can verify that the Klein bottle amplitude in the crosscap channel computed with the

wave-function (4.12) reproduces the independent result (4.5).

Another non-trivial check of the techniques used here is as follows. Starting with

a Möbius amplitude for a single hatted identity character ĉhI(r)
[ 1

c

]
we obtain, using the

arguments around eq. (2.6) and the P-matrix elements (C.19) of app. C, the type A crosscap

wave-function for the trumpet cft at infinite radius (or the N = 2 Liouville theory at

infinite radius), of similar form as in (4.10). This wave-function turns out to be the same

as the one derived by Nakayama in [37] where it was shown that it passes the non-trivial

check of one of the conformal bootstrap equations. In reference to [37], we would like

to point out here that our computation in app. C is similar to the one of [37] in the

case r = 0, which was the only case considered there. Also, certain important details of

the derivation of the P matrix elements are different in our work and help clarify some

unjustified statements in [37].19

Other amplitudes. For completeness we conclude this subsection with a list of the

Möbius strip amplitudes on D2-branes and a related discussion on open string densities.

We will focus on the D2-branes of [26, 27] which source states only in the continuous

representations. The corresponding boundary states will be denoted as |D2;P,M ;
[ a

b

]
〉 and

the explicit form of their wave-functions can be found in app. B. We would like to compute

19In particular the choice of hatted characters made in [37] (see the footnotes p. 6) does not match the

usual definition of hatted characters for the chiral algebra of a cft.
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the Möbius strip amplitude between these branes and the orientifold |OB〉. In the crosscap

channel it is straightforward to compute the overlap

MP,M,[a
b ]

(t) =
〈
D2;P,M ;

[a

b

] ∣∣∣e−
π
2t

Hc

∣∣∣ OB

〉
(4.13)

with the use of the crosscap and boundary state wave-functions (4.11), (B.2). Then, the

P-modular transformation of the continuous characters, eq. (C.28) leads to an open string

channel Möbius strip amplitude that is ir divergent as usual because of the infinite volume

of the brane. The full amplitude reads:

MP,M,[a
b ]

(t) = −25/2

k2
δ
(2)
b,1 (4.14)

∫ ∞

0
dp′

∑

ℓ∈Z

∑

c∈Z2

{
(−)a+cρ(p′;P ) ĉhc

(
p′, ℓ + 2M +

1

2
; it

)[
1

c

]
+

+
1

2

∑

ǫ=±

ǫρ̃(p′;P ) ĉhc

(
p′, ℓ + 2M +

1

2
+

ǫk

2
; it

) [
1

c

]}
,

where ρ(p′;P ) and ρ̃(p′;P ) are the spectral densities

ρ(p′;P ) =
1

4

∫ ∞

0
dp

1

cosh(πp
k )

cos

(
4πpP

k

)
cos

(
2πpp′

k

)
, (4.15a)

ρ̃(p′;P ) =

∫ ∞

0
dp

cosh πp cosh πp
k

sinh 2πp sinh 2πp
k

cos
4πpP

k
cos

(
2πpp′

k

)
. (4.15b)

This result should be compared to the annulus amplitude for open strings stretched between

two different D2-branes

A
P1,M1,

h

a1
b1

i

;P2,M2,
h

a2
b2

i(t) =

=
4

3k
δ
(2)
b1,b2

e
iπb1(a2−a1)

2

∫ ∞

0
dp′

∑

ℓ∈Z

{
ρ(p′;P1|P2)chc(p

′, ℓ + M1 − M2; it)

[
a2 − a1

b1

]
+

+
∑

ǫ=±

(−)b1

2
ρ̃(p′;P1|P2)chc

(
p′; ℓ + M1 − M2 +

ǫk

2
; it

)[
a2 − a1

b1

] }
(4.16)

where the spectral densities now read:

ρ(p′;P1|P2) =

∫ ∞

0
dp

tanh 2πp

sinh 2πp
k

cos
4πpP1

k
cos

4πpP2

k
cos

4πpp′

k
, (4.17a)

ρ̃(p′;P1|P2) =

∫ ∞

0
dp

cos 4πpP1

k cos 4πpP2

k cos 4πpp′

k

sinh(2πp) sinh 2πp
k

. (4.17b)

A few comments are in order here:

(i) Both in the annulus and the Möbius strip amplitudes the character that appears with

density ρ̃ exhibits an intriguing angular momentum shift by ±k
2 which implies a mild
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breaking of the open string momentum number quantization law. In the case of the

N = 2 Liouville theory, this shift was also noticed for the annulus amplitude in [27],

where it was suggested that it can be understood as due to the boundary interaction

terms on the D2-branes.

(ii) The spectral densities ρ and ρ̃ are different in the annulus and Möbius strip ampli-

tudes. They also appear in front of different characters (notice the extra 1
2 shift in

the argument of the continuous character in (4.14)). The origin of this shift lies in

the winding dependent phases iw and iw−1 that appear in the OB crosscap wave-

function (4.11). Note that this shift would not exist for the orientifold based on

the τ2Ω (versus τ2ΩB) parity which sources fields in the NS sector (versus the R

sector above). The fact that the Möbius strip spectral densities are different from

the annulus spectral densities and are not related in the obvious way to the open

string reflection amplitudes suggests a subtle property of the action of the parity on

the open string spectrum. This feature doesn’t have a clear explanation, but has

been noticed previously both in the context of bosonic and supersymmetric Liouville

theory [70, 71, 37]. In relation to this point, notice in the present context that both

in the annulus and the Möbius strip amplitude the density ρ is a finite quantity.

The densities ρ̃ have the usual IR divergence at p = 0 that needs to be regularized.

Incidentally, for integer level k the contribution that involves ρ̃ in the Möbius strip

amplitude cancels out completely. This cancellation, however, would not occur for

the orientifold based on the τ2Ω parity.

4.2 An Õ2/Õ0-plane

In this subsection we discuss the properties of the B-type parity P̃2. We will denote the

corresponding orientifold as ÕB. In section 3 we argued by descent from AdS3 that this

parity gives another type of O2-plane which is also space-filling in the cigar geometry. Many

of the details of the following analysis are similar to the ones of the above subsection, so

here we will be brief emphasizing mostly the details that are different. Also, it should be

noted that, as before, one can repeat the exercise for the P̃2(−)F̄ parity, but we will not

present this case explicitly here.

The asymptotic Klein bottle amplitude. We are concentrating again on the asymp-

totic linear dilaton region of the cigar. The P̃2 parity acts on the bosonic part of the

asymptotic cft as an sΩ parity, i.e.

P̃2 : |p, n,w〉 → (−)n|p, n,−w〉 . (4.18)

On the single complex fermion it acts as in (4.3). Consequently, the asymptotic expression

of the Klein bottle amplitude is

KÕB
(t) = V

∑

a∈Z2

∑

n∈Z

∫ ∞

0
dp (−)nchc

(
p,

n

2
; 2it

) [a

1

]
. (4.19)
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In the transverse crosscap channel it gives:

K̃ÕB
(t) =

kV

2

∑

a∈Z2

∑

ℓ∈Z

e
iπa
2 chc

(
0, kℓ +

k

2
;− 1

2it

)[
1

a

]
, (4.20)

which implies that the orientifold couples in the asymptotic region only to odd winding

states (compare this to the case of OB , eq. (4.5)).

Möbius strip amplitude for the D0-brane. For the P̃2 parity we postulate the

Möbius strip amplitude

M̃[a
b ]

(t) = δ
(2)
b,1

∑

c∈Z2

∑

r∈Z

(−)r ĉhI(r)

[
1

c

]
(it) , (4.21)

which compared to (4.7) has an extra (−)r phase in front of each character. We will see in

a moment that this ansatz is consistent with the above-mentioned semiclassical properties

of the parity P̃2.
20

Getting the crosscap wave-function. We can now determine the full crosscap state

|ÕB〉 by re-expressing the Möbius strip amplitude (4.21) in the transverse channel. The

S-modular transformation of the rhs of (4.21) gives

〈
D0;

[a

b

] ∣∣∣e−
2π
t

Hc

∣∣∣ ÕB

〉
=

= δ
(2)
b,1

∑

c∈Z2

∑

w∈Z

∫ ∞

0
dp P̃c;(p,kw/2)

I;[1
c ]

ĉhc

(
p,

kw

2
;− 1

4it

)[
1

c

]
+ discrete , (4.22)

where P̃⋆
⋆ are the matrix elements of the P-modular transformation of the combination of

characters
∑

r∈Z
(−)r ĉhI

[1
c

]
in the r sector, which can be found in app. C. Expressing

the lhs of eq. (4.22) as in (4.9) (with ΨOB
replaced by ΨÕB

) we deduce an expression

analogous to (4.10) which gives

ΨÕB

(
p,

kw

2
;

[
b

c

])
= −2

√
k δ

(2)
b,1 e

πi
4 e

iπc
2 ν−ip Γ(−2ip)Γ(1 − 2ip

k )

Γ(1 − ip + kw
2 )Γ(−ip − kw

2 )
×

×
cosh πp

[
δ
(2)
w,0e

iπ(c+ w
2

) sinh πp sinh πp
k − δ

(2)
w,1e

iπ w−1
2 sin πkw

2 cosh πp
k

]

sinhπ(p + ikw
2 ) sinhπ(p − ikw

2 )
. (4.23)

Again, the discrete couplings can be determined from the analyticity properties of (4.23)

or by using the results of app. C.

As we send p → 0 the wave-function (4.23) becomes

ΨÕB

(
0,

kw

2
;

[
b

c

])
= −2

√
k e

iπ
2

(c+w)e−
πi
4

π
Γ(0)δ

(2)
b,1 δ

(2)
w,1 . (4.24)

20Another way to motivate this ansatz is the following. In the N = 2 Liouville description of the theory,

the label r of the identity characters that appear in the annulus amplitude (4.6) can be thought of as the

(fractional) winding of open strings stretched between two copies of the localized brane. Since we want to

implement a winding shift as part of the definition of the T-dual of the parity P̃2, it is sensible to postulate

a Möbius strip amplitude of the form (4.21).
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The contribution of even winding numbers drops out and we are left with an expression

which is consistent with the asymptotic Klein bottle amplitude (4.20).

Repeating the above exercise in the trumpet cft at infinite radius, or in N = 2

Liouville theory at infinite radius, we find that the orientifolds OB and ÕB are identical.

This is sensible from the AdS3 point of view for the following reason. As explained in

section 3, in the single cover of AdS3 the parities τ2 and τ̃2 give two distinct pairs of H2

orientifold planes at t = 0 and t = π. For τ2 the orientifolds have the same tension, for

τ̃2 they have opposite tension. As we go from the single cover to the universal cover, the

two H2 planes are separated at infinite distance and the two parities τ2 and τ̃2 become

indistinguishable. Correspondingly, in the vector coset, or in N = 2 Liouville theory at

infinite radius, the orientifolds OB and ÕB become identical essentially because there is

no summation over r in the open string spectrum on the D0-brane. The result is given by

eqs. (5.5), (5.6) in the next section.

Other amplitudes. The Möbius strip amplitude on D2-branes can be obtained as in

the previous subsection. As in the case of the OB-plane, one finds a non-trivial action of

the orientifold on the annulus open string densities. The explicit form of the Möbius strip

amplitude is not very illuminating and will not be quoted here, but statements analogous

to those appearing in the previous subsection for the OB-plane apply in this case as well.

4.3 The orientifold geometry and Hanany-Witten setups

One can obtain a simple intuitive picture of the geometry of the orientifold planes OB by

descent from AdS3. As explained in section 3, the parity P2 descends from τ2Ω in AdS3

(see e.g. table 2) and gives naturally an O2-plane that covers the cigar. This expectation

is borne out nicely by the asymptotic semiclassical features of the exact result (4.11).

The one-point function reveals, however, additional features which are not amenable to

the semiclassical analysis. The orientifolds OB have additional couplings to odd winding

modes, which are ir finite, i.e. the corresponding one-point functions do not exhibit a pole

at p = 0. These couplings indicate the presence of a localized orientifold source based

on a parity, which morally speaking, acts on the U(1) part of the SL(2,R)/U(1) closed

string sector as an sΩ parity (in the notation of [35]). We pointed out in section 3 that

there is an AdS3 parity τ3Ω which gives a localized orientifold in AdS3 and upon descent

an orientifold localized in SL(2,R)/U(1) at the tip of the cigar at ρ = 0. This parity

involves a half-period shift s around the angular direction φ of the cigar and is a natural

candidate for the extra localized orientifold source that gives rise to the second term on

the numerator of the second line in (4.11). Consequently, we would like to propose that

the orientifold planes OB are geometrically a combination of an O0-plane, localized near

the tip of the cigar sourcing odd winding modes, and an O2-plane which extends to the

asymptotic cylinder region, covers the whole cigar and sources even winding modes.21 We

21Moreover, in the parent SL(2,R) theory we expect that the isometry τ3 acts trivially on the open string

sector of the D(-1)-brane, which contains only the identity representation of the SL(2,R) algebra. Hence,

upon descent it is natural to expect that the P3 parity shares the same Möbius strip amplitude as P2. This

is consistent with the interpretation of the properties of the OB plane that we propose here.
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will make this geometric statement more precise in section 5 by using a different basis of

wave-functions in H+
3 .

A similar story holds for the second B-type orientifold that we constructed. By descent

from AdS3 and from the asymptotic semiclassical analysis of the parity P̃2 on the cigar we

learn that the geometry of the ÕB orientifold is that of an O2-plane with an sΩ action in

the angular direction of the cigar. However, as in the above case of the OB orientifold, the

exact one-point functions (4.23) reveal an extra localized contribution which suggests the

presence of a localized orientifold source that couples to even winding states. As explained

in section 3, there is a localized orientifold in AdS3, based on the parity τ̃3, which descends

to an O0-plane on the cigar that couples to even winding states. This is a natural candidate

for the localized source in eq. (4.23). Hence, we propose that ÕB is a combination of an

Õ2- and an Õ0-plane based respectively on the parities P̃2 and P̃3.

Hanany-Witten setups. The above combination of localized and extended B-type ori-

entifolds as consistent conformal field theory objects may have a natural interpretation in

Hanany-Witten setups. In these setups one is able to engineer a variety of gauge theories

with suitable configurations of D-branes, orientifolds and fivebranes. For example, in type

IIA superstring theory one can suspend a stack of D4-branes between two parallel five-

branes to engineer super-Yang-Mills theory in four dimensions with N = 2 supersymmetry

and unitary gauge groups [19 – 21].

It is well known [15, 68] that the cigar cft appears naturally as part of the worldsheet

theory in the near horizon region of NS5-branes in a double scaling limit. For example, it

can be argued that string theory in the near-horizon geometry of two parallel fivebranes

separated in a transverse direction (say direction x6) is described in a double scaling limit

by type II non-critical string theory on R
5,1× SL(2,R)/U(1) , where the coset is at level

k = 2. In this context the D4-branes correspond in the SL(2,R)/U(1) space to D0-branes

at the tip.22

The non-critical string picture, which can be generalized to include also other con-

figurations of fivebranes, e.g. two orthogonal fivebranes, allows for a perturbative string

theory analysis of Hanany-Witten configurations that takes into account the gravitational

backreaction of the NS5-branes. In this way, one can test explicitly whether some heuristic

rules of brane constructions hold [59, 29, 28, 31].

In addition to the NS5-branes and D4-branes, it is possible to include an O4-plane

along x6 with the rest of its directions parallel to the fivebranes (see figure 2). On the D4-

branes this leads to N = 2 gauge theories with orthogonal and symplectic gauge groups

(see the review [21] and references therein). In the 6-direction the O4-plane breaks into

three pieces: two pieces extending to infinity from the left and the right of the fivebranes

and a finite piece in between. Based on the known dictionary between D-branes in the

presence of fivebranes and D-branes on the cigar [59], one would be urged to conjecture a

correspondence between the O4-plane of figure 2 and the OB orientifold of this work (of

22One can easily generalize this construction to a ring of more than two NS5-branes, for which the

superstring theory is really critical, and involves an N = 2 minimal model SU(2)/U(1); see [59] for more

details.
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x 6

D4 O4

Figure 2: Hanany-Witten setup for N = 2 super Yang- Mills with orthogonal and symplectic

gauge groups.

course appropriately translated in type II string theory where the gso projection involves

an asymmetric orbifold of SL(2,R)/U(1) ).

This correspondence indicates that one can match the extensive O2 and localized O0

contributions to the crosscap states with respectively the left, right semi-infinite pieces of

the O4-plane and the finite O4 piece in between. From this point of view it is natural to have

both the O2 and O0 contributions to OB , because each of them separately would correspond

to an O4-plane ending on a fivebrane, which is certainly not a consistent configuration.

Moreover it is known [39] that the parts of the O4-plane on each side of the NS5-brane

carry opposite r-r charge. If one starts with two NS5-branes on top of each other and an

O4+ plane as in figure 2 and begins to separate the fivebranes in the x6 direction, the part

of the orientifold that stays between the NS5-branes is negatively charged, which requires

the addition of a pair of D4-branes to ensure charge conservation across the fivebranes.23

It should be possible to reproduce this feature from the details of our OB crosscap state.

We will see below that the couplings to closed string modes of the localized and extended

parts of the orientifold have in fact opposite signs.

In Hanany-Witten setups one can engineer a wide class of four-dimensional gauge

theories with SU(N), SO(N) or Sp(N) gauge groups and non-chiral or chiral matter. For

instance, one can obtain N = 1 SQCD in this way with a combination of D4- and D6-

branes in type IIA. This configuration has been analyzed in the dual cigar cft language

in [28, 31]. In these more general constructions O4- and O6-planes play an important

role. It would be very interesting to investigate in general how known properties of these

constructions translate in the language of the exact cft description of this paper and vice

versa and what lessons we can learn in this way about gauge theory dynamics.

Some quantitative results. In order to obtain a better understanding of the properties

of orientifolds in the context of Hanany-Witten setups and their relation with our work,

we elaborate a bit further here on a configuration including O4-planes in six-dimensional

non-critical type II superstrings using an OB-plane similar to those constructed above.

23Conversely, a configuration with (negatively charged) O4−-planes requires the addition of a pair of

semi-infinite D4-branes on each side of the fivebrane interval.
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We start with type IIA superstrings on R
5,1× SL(2,R)/U(1) |2. The angular coordinate

of the cigar for k = 2 is asymptotically a free U(1) boson at level 2. It is well-known that

upon a Z2 orbifold this U(1) is the same as the theory of a Dirac fermion.24 We therefore

define special combinations of the SL(2,R)/U(1) characters at level k = 2 that appear

naturally in the fermionic description; let us consider the example of the identity character

Chnc
I (τ)

[
a

b

]
= e

iπab
2

∑

r∈Z

eiπrbchI(r; τ)

[
a

b

]
(4.25)

and the continuous representations

Chnc
c (P ; τ)

[
a

b

]
= e

iπab
2

∑

r∈Z

eiπrbchc(P, r +
a

2
; τ)

[
a

b

]
. (4.26)

As far as the [a, b] labels are concerned, these characters are such that their modular trans-

formation is similar to that of two left-moving complex fermions. The usual momentum

and winding of the cigar are

n = r + r̄ +
a + ā

2
, w =

r − r̄

2
+

a − ā

4
, (4.27)

where r̄ enters into the definition of the right-moving analogue of (4.26). Since we are

dealing with an asymmetric orbifold of the cigar, n and w are not necessarily integer.25 In

the context of two parallel fivebranes, the momentum n of the cigar (which is conserved)

corresponds to the (unbroken) rotational symmetry in the plane (x8, x9) while the fractional

winding symmetry corresponds to the (broken to Z2) rotational symmetry in the plane

(x6, x7) where the fivebranes have been separated [72, 59].26 Since we are dealing here with

an asymmetric Z2 orbifold of the cigar, acting precisely as shifts along φ, the distinction

between OB and ÕB is intertwined with the details of the gso projection. We find that the

OB orientifold seems to be the relevant parity here as the ÕB amounts, in the fermionized

picture, to reversing the gso projection for one of the complex fermions in the transverse

direction to the fivebranes.

Using the set of characters defined above one can write the torus amplitude of the type

IIA non-critical superstring theory of interest as

T = V

∫

F

dτdτ̄

4τ2
2

1

(8π2τ2)6η4η̄4

1

2

∑

a,b∈Z2

1

2

∑

ā,b̄∈Z2

(−)a+b+ā+b̄+āb̄ ϑ2
[a
b

]
ϑ̄2

[ā
b̄

]2

η2η̄2
×

×
∫ ∞

0
dP Chnc

c (P ; τ)

[
a

b

]
C̄h

nc

c (P ; τ̄ )

[
ā

b̄

]
, (4.28)

24This allows the U(1)2 to play the role of the two ”missing” fermions (compared to ten-dimensional flat

space-time) in the gso projection.
25The standard extended characters of SL(2,R)/U(1) (see app. A), are closely related to the above char-

acters via a Z2 orbifold. In the type II context considered here this orbifold is asymmetric.
26This is consistent with the fact that the winding number can be violated by any integral amount by

insertion of the winding condensate (2.5) in the correlators. In the Z2 orbifold model it remains a conserved

Z2 charge.
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where F is the PSL(2,Z) fundamental domain. Now let us add N D4-branes suspended

between the NS5-branes. In our exact cft setup each D4 has four Neumann boundary

conditions in the six flat directions of R
5,1 and is a D0-brane on the cigar part of the

worldsheet cft. Using the above modified set of coset characters, one requires for these

branes the annulus amplitude

A = N2 V4

∫
dt

2t

1

(16π2t)4η4

1

2

∑

a,b∈Z2

(−)a+b ϑ2
[a
b

]

η2
Chnc

I (it)

[
a

b

]
. (4.29)

In addition, we consider an OB orientifold of the cigar with four Neumann dimensions in

R
5,1. Requiring again similar modular properties as those of two Dirac fermions we define

the hatted version of the characters (4.25) as follows:

Ĉh
nc

I (it)

[
a

b

]
= e

iπ
4

(1−a2)e
iπab

2

∑

n∈Z

eiπnbchI(n; it +
1

2
)

[
a

b

]

= e
iπ(ab−1)

2
+ iπa

4

∑

n∈Z

e
iπ

“

n(b+1)+ n2+an
2

”

ĉhI(n; it)

[
a

b

]
. (4.30)

These hatted characters are such that the orientifold action on the fermionized U(1)2 is

similar to that on the other worldsheet fermions. They are related non-trivially to a sum

of unextended hatted characters, as defined in app. C and used in section 4. Indeed, in the

definition (4.25), (4.26) one sums over the spectral flow orbit of the N = 2 algebra, so that

the states are reorganized in terms of the extended symmetry that appears for k ∈ Z>0. As

a consequence, states with r 6= 0 are considered as primaries of the unextended symmety,

but are not primaries of the extended one. This is why the character (4.30) contains the

phase factor exp iπ(r2/2 + ar) if one compares with app. C.27 The general guideline is to

obtain modular properties consistent with the generalized gso projection and spacetime

supersymmetry.

Accordingly, we make the following Möbius strip amplitude ansatz for an orientifold

extended along R
3,1 and of the OB type in SL(2,R)/U(1) – expected to correspond to an

O4-plane in the five-branes background – and N D4-branes in the non-critical superstring

(for the overall phase in the ns sector, see footnote 18):

M = NǫV4

∫
dt

2t

1

(16π2t)4η4(it + 1
2 )

1

2

∑

a,b∈Z2

e
iπ(1−a2)

4 (−)a+b ϑ2
[a
b

]
(it + 1

2)

η2(it + 1
2)

Ĉh
nc

I (it)

[
a

b

]
.

(4.31)

In this expression ǫ = ±1 denotes the usual sign ambiguity of the Möbius strip amplitude.

We can modular transform this result to the closed string channel using the results of

app. C. Then we obtain

M = NǫV4

∫
dt

t3
1

(16π2)4η4(− i
4t + 1

2)

1

2

∑

a,b∈Z2

(−)b+ab+1
ϑ2

[
a

a−b+1

]
(− i

4t + 1
2 )

η2(− i
4t + 1

2 )
× (4.32)

27The situation is exactly the same in U(1)k vs. generic U(1) orientifolds as discussed in [35].
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×
√

2

∫ ∞

0

dP

cosh πP

[
cosh

πP

2
−sinh

πP

2
sinh πP

]
e

iπ(a2−1)
4 Ĉh

nc

c

(
P,− 1

4it

)[
a

a−b+1

]
.

There is also a contribution of j = 1 discrete characters in this expression which we will not

write out explicitly. We observe that the contributions of the O2- and O0-planes, respec-

tively the first and second terms inside the square brackets, couple to the same characters

(in contrast with the un-orbifoldized SL(2,R)/U(1) theory discussed in subsection 4.1).

More importantly, these two parts of the orientifold wave-function come with opposite

signs, suggesting as discussed above that, while the O2-part (mapped to the semi-infinite

parts of the O4-plane outside the five-branes) corresponds to an O4+ plane, the O0-part

(mapped to the segment of the O4-plane between the five-branes) is similar to an O4−

plane.

Using the explicit expression for the continuous representation characters, see app. A,

one finds, using Jacobi’s abstruse identity, that the amplitude vanishes as expected from

supersymmetry:

M = NǫV4

∫
dt

t3
1

(16π2)4η9(− i
4t + 1

2 )
×

× 1√
2

∫ ∞

0

dP

cosh πP

(
cosh

πP

2
−sinh

πP

2
sinhπP

)
e−

π
4t

P 2
[
ϑ4

3−ϑ4
4−ϑ4

2

](
− i

4t
+

1

2

)

= 0 . (4.33)

We leave a more detailed analysis of these results and the corresponding spacetime

physics for future work.

5. A-type orientifolds on the cigar: an O1-plane

In this last section we construct A-type orientifolds of the SL(2,R)/U(1) coset cft. In the

axial coset (the cigar) they correspond to O1-planes extending in the asympotic region, with

a geometry similar to the lower-left picture of figure 1. Algebraically they are related to

the parity P1 = τ1ΩB , using the notation of section 3. In terms of the natural N = 2 parity

ΩA we can write P1 as (−)F̄ ΩA. Let us recall that the ”twisted” version of this orientifold,

the τ4Ω parity of section 3, is non-perturbatively inconsistent because it projects out the

winding condensate (2.5).

Although A-type boundary conditions are usually more straightforward to deal with, a

problem arises when one tries to apply modular boostrap methods to this case. Indeed, the

D0-brane of the cigar has B-type boundary conditions, therefore its Möbius strip amplitude

with the O1-plane would involve mixed boundary conditions and would either vanish or

turn the computation of the corresponding P-matrix into a complicated problem. We could

try to circumvent this difficulty by starting with the Möbius strip amplitude for an A-type

brane, i.e. a D1-brane. However the latter has a continuous open string spectrum, with

a regularized density of states that contains most of the information about the boundary

state. Previous experience teaches us that dealing with this volume divergence is quite

intricate.

– 27 –



J
H
E
P
1
1
(
2
0
0
7
)
0
9
3

Our strategy to solve this problem will be to study this orientifold in the parent

wzw model SL(2,R) – or more conveniently in its Euclidean counterpart H+
3 – rather

than in its cosets. Indeed, it is rather straightforward to ”lift” the results of section 4

concerning the O2-planes of the axial coset SL(2,R)/U(1) to H+
3 . There the problem is

simpler since the O2-plane and the O1-plane are related to each other by an SL(2,C)

relation, as the corresponding D-branes [55].28 This will furthermore allow us to compare

with the conformal bootstrap results in H+
3 that were obtained in [33].

The asymptotic Klein bottle amplitude. We can gain intuition about the O1-plane

by looking at the way the orientifold projection acts on the closed string spectrum of the

cigar and computing the Klein bottle amplitude in the direct channel. As in section 4

we consider first the extensive part of the torus amplitude. The contribution of the finite

regularized density of states will be computed later using the exact crosscap state. There

we will also see that the O1-plane couples only to the continuous representations.

The leading part of the torus amplitude with a type 0B modular invariant appears in

eq. (4.1). Following the geometric and algebraic descriptions of section 3, we find that the

parity P1 = (−)F̄ τ1Ω acts on an ns-ns primary state |P ;n,w〉 ⊗ |0〉ns-ns as follows:

P1 : |P ;n,w〉 ⊗ |0〉ns −→ |P ;−n,w〉 ⊗ |0〉ns-ns . (5.1)

The trace over the bosonic oscillators in unaffected, since Ω requires the pairing of left-

and right-movers and the geometric involution τ1 leaves the paired combinations invariant.

The parity, including the (−)F̄ factor, acts on worldsheet fermions as

P1 : ψǫ → ψ̄−ǭ , ψ̄ǭ → −ψ−ǫ , (5.2)

so that each term of the winding N = 2 Liouville interaction, see eq. (2.5), is separately

invariant. Because of the diagonal gso projection only states with F + F̄ = 0 mod 2

contribute to the torus amplitude. One can similarly trace the action in the r-r sector.

The Klein bottle amplitude reads:

KO1(t) = V
∑

a∈Z2

∫ ∞

0
dP

∑

w∈Z

e
−4πt

“

P2

k
+ kw2

4

”

ϑ
[
a
0

]
(2it)

η(2it)3
(5.3)

Using the standard S-modular transformation (A.3), one finds in the transverse channel

K̃O1(t) =
V

2

∑

a∈Z2

∑

n∈Z

δ
(2)
n,0e

−π
t

n2

4k
ϑ
[0
a

]
(− 1

2it)

η(− 1
2it)

3
(5.4)

Therefore the orientifold plane sources only even momentum states in the ns-ns sector in

this context.

28We essentially apply backwards the strategy used in [22] to find the D2-brane of the cigar cft. Note

that we use the equivalence SL(2,R)/U(1) ∼ H+
3 /R.
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The crosscap wave-function by rotation. In order to obtain the full crosscap state

of the O1-plane in SL(2,R)/U(1) , we start from the O2 crosscap wave-function in H+
3 . The

latter is obtained using the coset construction backwards, as explained in the beginning of

this section, from our results for the OB-plane in the coset model. Let us write the one-point

functions on RP2 for the O2/O0-plane, for generic j in the ns-ns sector as follows:

〈V ns-ns
j,m m̄(z, z̄)〉O2 =

CO2
j m m̄

|1 + zz̄|2∆jmm̄
(5.5)

with

CO2
j m m̄ = Nke

iπ
4 δm,m̄ν

1
2
−jΓ

(
1 +

1 − 2j

k

)
×

×
{

cos
π(j − 1

2)

k
Γ(1 − 2j)

(
Γ(j − m)

Γ(1 − j − m)
+

Γ(j + m)

Γ(1 − j + m)

)
−

−i sin
π(j − 1

2)

k

Γ(j + m)Γ(j − m)

Γ(2j)

}
. (5.6)

This expression is obtained from the P-matrix element of one unextended character, see

app. C, analytically continued in the complex j-plane. In the axial/vector coset, there will

be some condition over m and m̄ (i.e. m± m̄ = 0), otherwise this result applies readily (up

to a k-dependent normalization factor Nk) to the parent H+
3 theory.29

Since we consider below the H+
3 model, for which the Euclidean time is non-compact,

there is no room for an analogue of the ÕB orientifold. It will be more convenient here to

use the (x, x̄) basis, related to the (m, m̄) basis through the Mellin transform (see e.g. [55]):

f̂m m̄ =
1

4π2

∫

C

d2x xj−1+m x̄j−1+m̄f(x, x̄) (5.7)

Therefore we can re-express the crosscap couplings as

CO2
j x x̄ = 4πNk ν

1
2
−jΓ

(
1 +

1 − 2j

k

)
×

×
{

cos
π(j − 1

2)

k
|1 − xx̄|−2j − i sin

π(j − 1
2)

k
|1 + xx̄|2j

}
. (5.8)

Comparing this expression to the one-point functions for the branes found in [55] in H+
3 , one

confirms the geometrical interpretation outlined in section 4. The first term corresponds

to an H2 orientifold in H+
3 , since it has the geometry of an H2 brane with no magnetic field,

while the second term corresponds to a point-like orientifold with the same geometry as

a ”spherical brane” in H+
3 with zero radius.30 As argued previously from several point of

views, these orientifolds are tied together in the coset and cannot make sense separately.

29Note that in H+
3 there are no spectrally-flowed states in the spectrum.

30In fact, the wave-functions of both terms in eq. (5.8) agree with the corresponding wave-functions of

the Euclidean D1- and D(-1)-branes, up to the quantum corrections (the cos π(j − 1
2
)/k and sin π(j − 1

2
)/k

factors) which are not fixed by the gluing conditions alone, and therefore may differ between a brane and

an orientifold with the same geometry.
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Now, in order to obtain the Euclidean AdS2 orientifold in Euclidean AdS3, we consider

an SL(2,C) rotation acting on the SL(2,C)/SU(2) eigen-functions as follows:

U : Φj
xx̄ −→

∣∣∣∣
x + 1√

2

∣∣∣∣
−4j

Φj
x−1
x+1

, x̄−1
x̄+1

(5.9)

Under this rotation, the crosscap wave-function (5.8) transforms as:

CO2
j x x̄ −→ 4πNk ν

1
2
−j Γ

(
1 +

1 − 2j

k

)
×

×
{

cos
π(j − 1

2 )

k
|x + x̄|−2j − i sin

π(j − 1
2)

k
|1 + xx̄|−2j

}
. (5.10)

This result can be interpreted as follows. The first term of the crosscap wave-function that

exhibits the H2 geometry, is rotated to an orientifold with an AdS2 geometry. The second

term is invariant as it should, since the O(-1) has a point-like geometry and sits at the

center of rotation.

We now come back to the axial coset SL(2,R)/U(1) . There we would like to argue

that by descent from the first term alone, i.e. the AdS2-plane, we obtain a consistent O1-

plane. First notice that the two terms of eq. (5.10) will give rise to different boundary

conditions for the N = 2 superconformal algebra (A-type for the first one and B-type for

the second one). In other words, the corresponding crosscap states will be constructed

out of a different set of Ishibashi states. We learned, however, in section 4 that an O0-

plane alone (this would come from the second term of eq. (5.10)), cannot be a consistent

orientifold on its own. In particular, the couplings to discrete representations will not be

consistent, see app. C. Furthermore, we will see below that the first term of (5.10), after

descent to the coset theory, does not contain couplings to discrete representations and

therefore is free of this problem. To summarize, from the first piece we get the O1-plane

wave-function in the x-basis

CO1
j x x̄ = 4πNk ν

1
2
−jΓ

(
1 +

1 − 2j

k

)
cos

π(j − 1
2)

k
|x + x̄|−2j . (5.11)

We can now go back to the (m, m̄) basis using the Mellin transform (5.7) and finally obtain

the crosscap wave-function in the cigar for the ns-ns sector:

CO1ns

j n+kw
2

n−kw
2

= N ′
k δw,0 δ

(2)
n,0ν

1
2
−j cos

π(j − 1
2)

k

Γ
(
1 + 1−2j

k

)
Γ(1 − 2j)

Γ(1 − j + n
2 )Γ(1 − j − n

2 )
. (5.12)

Up to a cosine term (which accounts for ”quantum” corrections to the semi-classical result)

we have indeed the same wave-function as for a straight (i.e. with ρ̂ = 0) D1-brane in

the cigar, see eq. (B.4) in app. B or ref. [22]. One can check that the crosscap wave-

function is compatible with the reflection symmetry (A.7). Similarly to the D1-brane

case, this crosscap wave-function does not possess couplings to discrete representations of

SL(2,R)/U(1) as we advertised above.
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It is rather straightforward to obtain the wave-function in the r-r sector. Indeed, using

the coset construction, the H+
3 /R coset superconformal field theory can be represented as

the constrained product of cfts H+
3 × U(1) × [Dirac fermion] × [ghosts] × [superghosts].

The wave-function (5.12) is written in terms of the eigenvalues of the bosonic SL(2,R)

algebra (mb, m̄b) = (m − mf , m̄ − m̄f ) where (mf , m̄f ) is the same as the left- and right-

fermion number of the free Dirac fermion. Therefore we find the generic wave-function

(with a similar notation as in section 4)

ΨO1

(
p, n;

[
b

c

])
= N ′

k eiϕ(b,c) δ
(2)
n,0ν

−ip cosh
πp

k

Γ
(
1 − 2ip

k

)
Γ(−2ip)

Γ(1
2 − ip + n+b

2 )Γ(1
2 − ip − n+b

2 )
. (5.13)

We will fix below the normalization of the wave-function (5.12) and the phases ϕ(b, c) in

the different fermionic sectors by computing different amplitudes.

Comparison with conformal bootstrap. Partial results for the conformal bootstrap

of Euclidean AdS2 orientifold planes in H+
3 were obtained in [33]. The author of this paper

considered the auxillary two-point function 〈Φj
xx̄Φ

− 1
2

yȳ 〉RP2 with a degenerate representation

j = −1
2 in order to constrain the form of the crosscap wave-function. In this way he

proposed couplings to the continuous representations which are identical to our result (5.11)

when evaluated at j = 1
2 + ip. However we should emphasize that the conformal bootstrap

method used there was not powerfull enough in order to fully determine the crosscap wave-

function. Our approach allows to remove this freedom and find the full wave-function, up

to an overall normalization that is fixed by a Cardy-like condition.

Asymptotic Möbius strip amplitude for the D1-brane. We will study here the

effect of the parity P1 on open string sectors attached to D1-branes of the cigar. As

reviewed in section 2 these branes, which extend to the asymptotic region, are characterized

by two parameters (ρ̂, φ̂). From eq. (2.8) we observe that ρ̂ parameterizes the position of

the turning point of the brane near the tip of the cigar at ρ = 0. Since the O1-plane

corresponding to P1 has a similar geometry as the D1-brane with ρ̂ = 0, it is clear that

only the D1-branes with ρ̂ = 0 are invariant.

The second parameter φ̂ gives the position of the brane on the transverse circle in the

asymptotic region ρ → ∞ where the geometry is approximated by a semi-infinite cylinder.

The brane possesses two branches, at (φ̂, φ̂ + π). Consequently, there are two kinds of

open strings, one kind with integral winding where both ends of the string are on the same

branch, and another kind with half-integral winding where the open string has one end on

each branch.31 The parity P1 as defined in section 2 corresponds at infinity to a pair of

O1-planes of equal tension located at φ = 0, π.

31As with closed strings, winding number on D1-branes in the full cigar geometry is not conserved since an

open string can slip around the tip. Technically this effect comes from the boundary interaction associated

with the branes which breaks the winding symmetry, just like the winding condensate (2.5) breaks it in the

closed string sector.
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In the asymptotic region, one finds that the action of the parity on open string states

with integral winding w is

P1 : |w〉φ̂,φ̂ −→ |w〉
−φ̂,−φ̂ . (5.14)

There are invariant states provided φ̂ = 0 mod π. Since the brane has two branches

there is actually only one possibility. Let us now consider open strings with half-integral

windings. The action of the parity reads

P1 : |w〉φ̂,φ̂+π −→ |w〉π−φ̂,−φ̂ . (5.15)

In this case, invariant open string states exist when φ̂ = π/2 mod π. Accordingly we

will distinguish between two different cases: the case of a D1-brane with φ̂ = 0 and the

case with φ̂ = π/2. In the first case, integral windings will contribute to the Möbius strip

amplitude, in the second half-integral windings will contribute.

Let us start with the first case. The annulus amplitude for a D1-brane, see [22, 23],

comes with two different regularized densities of states for the integral and half-integral

winding modes depending on the parameter ρ̂. The extensive part of the open string

partition function, however, is the same in both cases and can be written as

Aφ̂=0 [a1
b1

] ; φ̂=0 [a2
b2

](t) =

V δ
(2)
b1,b2

∫ ∞

0
dP

∑

w∈Z

{
chc(P, kw; it)

[
a1 − a2

b1

]
+ chc(P, k(w +

1

2
); it)

[
a1 − a2

b1

]}
(5.16)

Acting with the parity P1 one finds the Möbius strip amplitude:

Mφ̂=0 [ab]
= V δ

(2)
b,0

∫ ∞

0
dP

∑

c∈Z2

∑

w∈Z

ĉhc(P, kw; it)

[
0

c

]
(5.17)

With the help of eq. (C.28) we perform now a P-modular transformation to the closed

string channel to obtain the amplitude

M̃φ̂=0 [ab]
(t) = V δ

(2)
b,0 e

iπ
4

∑

c∈Z2

∑

n∈Z

e−
iπc
2 δ

(2)
n,0 ĉhc

(
0,

n

2
;− 1

4it

)[
0

1 − c

]
(5.18a)

= V
∑

c∈Z2

∑

n∈Z

Φsing

D1;(ρ̂=0;φ̂=0)[ a
−b]

(0;−n)Ψsing
OA

(
0, n;

[
b

c

])
ĉhc

(
0,

n

2
;− 1

4it

)[
b

c−a

]
.

(5.18b)

In (5.18b) only the residues of the poles that the wave-functions have for p → 0 appear,

since we started with the extensive part of the annulus amplitude. Using the brane wave-

function (B.4) one finds in the limit p → 0

ΦD1;(ρ̂=0;φ̂=0)[ab]
(p;n)

p→0∼ δ
(2)
n,0

ν−ip Γ(0)√
2Γ(1

2 − n+b
2 )Γ(1

2 + n+b
2 )

=
(−)

n
2√

2
δ
(2)
n,0δ

(2)
b,0 ν−ip Γ(0)

π
. (5.19)

In this way, we obtain the volume diverging part of the crosscap wave-function as

Ψsing
OA

(
0, n;

[
b

c

])
=

√
2δ

(2)
b,0 δ

(2)
n,0(−)

n
2 e

iπ(1−2c)
4 ν−ip . (5.20)
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We observe that it agrees exactly with the singular part of eq. (5.13) provided we make

the choice

N ′
k eiϕ(b,c) =

√
2e

iπ(1−2c)
4 . (5.21)

Actually, in order to obtain an orientifold with real tension in the string theory context,

one can use the phase ambiguity in the definition of the crosscaps in the ns-ns sector that

was mentioned in footnote 18. This done, the exact crosscap wave-function of the O1-plane

in the SL(2,R)/U(1) super-coset is

ΨOA

(
p, n;

[
b

c

])
=

√
2e

iπ(1−b−c)
2 δ

(2)
n,0ν

−ip cosh
πp

k

Γ
(
1 − 2ip

k

)
Γ(−2ip)

Γ(1
2 − ip + n+b

2 )Γ(1
2 − ip − n+b

2 )
. (5.22)

As with the D1-brane wave-function there is no coupling to the states of discrete represen-

tations of SL(2,R)/U(1) .

The case of the D1-brane with φ̂ = π
2 can be treated along the same lines. First, one

obtains in the open string channel a Möbius strip amplitude similar to eq. (5.17) but with

half-integral windings only (i.e. in (5.17) w should be replaced with w + 1
2). In the dual

channel, one gets eq. (5.18a) with an extra phase eiπn/2. This phase is precisely canceled

by the phase e−inφ̂ of the D1-brane wave-function (see eq. (B.4)) since φ̂ = π/2. This is a

nice check of consistency, because the crosscap wave-function (5.22) cannot depend on the

specific brane that we use in the derivation.

Regularized Klein bottle amplitude. Having at our disposal the exact crosscap state

for the O1-plane we can compute the Klein bottle amplitude beyond the asymptotic re-

gion (5.3) and thus determine also the non-trivial regularized density of states. We start

with the transverse channel amplitude

K̃O1(t) =
∑

c∈Z2

∫ ∞

0
dp′

∑

n∈Z

ΨOA

(
−p′,−n;

[
0

−c

])
ΨOA

(
p′, n;

[
0

c

])
chc

(
p′,

n

2
;− 1

2it

)[
0

c

]

= − 1

2k

∑

c∈Z2

∫ ∞

0

dp′

tanh πp′ tanh πp′

k

∑

N∈Z

chc

(
p′, N ;− 1

2it

)[
0

c

]
. (5.23)

We observe that the integral over p′ has an ir divergence, which corresponds to the infinite

volume of the cigar manifold. Taking the leading, divergent piece – proportional to δ(p′) –

one recovers the direct channel Klein bottle amplitude (5.3). The finite part of the Klein

bottle amplitude in the direct channel reads

KOA
= −

∑

c∈Z2

∑

w∈Z

∫ ∞

0
dP ρK(P ) chc

(
P,

kw

2
; 2it

) [
c

0

]
, (5.24)

with regularized density of states

ρK(P ) =
1

2iπ

d

dP
i

∫ ∞

0

dy

y

[
sin 4Py

k

2 tanh y tanh y
k

− 2P

y

]
. (5.25)
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Such a density of states is not related to the closed string reflection amplitude as in the

torus case [66 – 68]. Indeed, the density of states that appears in the latter is

ρT (P, n) =
1

2iπ

d

dP
log

Γ(1
2 − iP + n)

Γ(1
2 + iP + n)

. (5.26)

and is naturally related to the closed string reflection amplitude given by eq. (A.6). In

particular, this expression does not depend on the level k in contrast with (5.25). This

non-trivial (and perhaps counter-intuitive) action of orientifolds on density of states is a

general feature (for related remarks in the case of the O2-plane see section 4).
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A. Conventions and useful material

Free fermions. Let us consider first the theory of a free Dirac fermion. We define the

usual theta-functions as

ϑ

[
a

b

]
(τ, ν) =

∑

n∈Z

q
1
2
(n+ a

2
)2e2iπ(n+ a

2
)(ν+ b

2
),

where q = e2πiτ . The fermionic characters are written as ϑ
[a
b

]
(τ ; ν)/η(τ). The ns sector

(resp. r sector) is given by a = 0 (resp. a = 1), while characters with b = 1 have a phase

eiπF inserted in the trace. Their modular transformations read

ϑ
[a
b

]
(− 1

τ ;−ν
τ )

η(− 1
τ )

= eiπ( ν2

τ
− ab

2
) ϑ

[
−b
a

]
(τ ; ν)

η(τ)
(A.1a)

ϑ
[a
b

]
(τ + 1; ν)

η(τ + 1)
= e−i π

4
a(a−2)

ϑ
[ a
a+b−1

]
(τ ; ν)

η(τ)
(A.1b)

Characters of the non-minimal N = 2 superconformal algebra The characters of

the SL(2,R)/U(1) super-coset at level k are characters of the N = 2 superconformal algebra

with c = 3+6/k. They come in different classes corresponding to irreducible representations

of the SL(2,R) algebra in the parent theory. In all cases the quadratic Casimir of the

representations is c2 = −j(j − 1). Here we summarize the basic representations.

First we consider the continuous representations with j = 1/2 + ip, p ∈ R
+. The

corresponding characters are denoted by chc(p,m)
[a
b

]
, where the N = 2 superconformal

U(1)R charge of the primary is Q = 2m/k, m ∈ R.32 The explicit form of the characters is

chc(p,m; τ, ν)

[
a

b

]
= q

p2+m2

k e4iπν m
k

ϑ
[a
b

]
(τ, ν)

η3(τ)
. (A.2)

32The spectrum of R-charges is not necessarily continuous and depends on the model considered. For

instance in the cigar cft one has m = (n + kw)/2 with n, w ∈ Z.
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These are also the characters that appear in a free N = 2 linear dilaton theory. Their

S-modular transformation is straightforward

chc

(
P,m;−1

τ

)[a

b

]
=

4

k
e−

iπab
2

∫ ∞

0
dP ′

∫ ∞

−∞

dm′ e−
4πimm′

k cos

(
4πPP ′

k

)
chc

(
P ′,m′; τ

) [−b

a

]
. (A.3)

Another important class of representations comprises of discrete representations in the

range 1
2 < j < k+1

2 . The corresponding characters are usually denoted as chd(j, r)
[a
b

]
, and

have N = 2 U(1)R charge Q = (2j + 2r + a)/k with r ∈ Z.33 In the cigar, j is quantized

but not in the non-compact N = 2 Liouville theory. The explicit form of the discrete

characters is

chd(j, r; τ, ν)

[
a

b

]
= q

−(j−1/2)2+(j+r+a/2)2

k e2iπν 2j+2r+a
k

1

1 + (−)b e2iπνq1/2+r+a/2

ϑ
[a
b

]
(τ, ν)

η3(τ)
.

(A.4)

The discrete primary states are

|j,m = j + r〉 = |0〉ns ⊗ |j,m = j + r〉bos r > 0

|j,m = j + r〉 = ψ−

− 1
2

|0〉ns ⊗ (J−
−1)

−r−1|j, j〉bos r < 0

While the closed string spectrum in SL(2,R)/U(1) contains only discrete and contin-

uous representations, the spectrum of open strings attached to localized D-branes is built

on the identity representation. We denote the character of the identity representation by

chI(r)
[a
b

]
. It has the form

chI(r; τ, ν)

[
a

b

]
=

(1 − q) q
−1/4+(r+a/2)2

k e2iπν 2r+a
k(

1 + (−)b e2iπνq1/2+r+a/2
) (

1 + (−)b e−2iπνq1/2−r−a/2
) ϑ

[
a
b

]
(τ, ν)

η3(τ)
. (A.5)

The identity primary states in the NS sector are the identity operator |j = 0, r = 0〉⊗ |0〉ns

and the primary states

|r〉 = ψ+
− 1

2

|0〉ns ⊗ (J+
−1)

r−1|0, 0〉bos for r > 0 with L0 =
r2

k
+ r − 1

2
,

|r〉 = ψ−

− 1
2

|0〉ns ⊗ (J+
−1)

−r−1|0, 0〉bos for r < 0 with L0 =
r2

k
− r − 1

2
.

Reflection amplitude Among the known structure functions of the SL(2,R)/U(1) con-

formal field theory, the two-point function, or reflection amplitude, plays a special role. It

reads [15] (with ν = Γ(1 − 1
k )/Γ(1 + 1

k )):

〈V 1−j
−n−w(z, z̄)V j

n w(0, 0)〉 = |z|−4∆jnwR

(
j,

n + kw

2
,
n − kw

2

)

=
ν1−2j

|z|4∆jnw

Γ(1 − 2j)Γ(1 + 1−2j
k )

Γ(2j − 1)Γ(1 + 2j−1
k )

Γ(j + n+kw
2 )Γ(j + n−kw

2 )

Γ(1−j+ n+kw
2 )Γ(1−j+ n−kw

2 )
.

(A.6)

33Only states with r > 0 are primaries of SL(2,R) , however states with r < 0 are also primaries in the

coset.
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As the name suggests, the reflection amplitude is related to the symmetry of the theory

V1−j,−m−m̄ = R (j,m, m̄) Vj,mm̄ . (A.7)

Extended characters When k is rational it is often convenient to define extended char-

acters [24]. Writing k = N/K with K,N ∈ Z>0, the extended characters are defined by

partially summing over N units of spectral flow. The resulting characters are characters

of an extended chiral algebra similar to the extended chiral algebra of a U(1) boson at

rational radius squared. Explicitly, extended characters (denoted by capital letters) are

defined as

Ch⋆(⋆, ⋆)

[
a

b

]
(τ ; ν) =

∑

ℓ∈Z

chc (⋆, ⋆)⋆

[
a

b

]
(τ ; ν + Nℓτ) . (A.8)

For example, the extended characters of the continuous representations are for k integer

Chc(P,m)

[
a

b

]
(τ ; ν) =

q
P2

k

η3(τ)
Θ2m,k(τ ;

2ν

k
) ϑ

[
a

b

]
(τ ; ν) (A.9)

with 2m ∈ Z2k.

B. D-brane wave-functions

For the convenience of the reader we list here the one-point functions of primary fields on

the disc with boundary conditions corresponding to the D0-, D1- and D2-branes of the

supersymmetric cigar. As far as D2-branes are concerned, for the purposes of the main

text we will focus on the D2-branes of refs. [26, 27] that are based on the continuous

representations. For a more complete list of the D-branes of N = 2 Liouville theory we

refer the reader to the excellent presentation of [27].

The one-point function on the disc of a primary field V[a
b ]

j,n,w with quantum number

j = 1
2 + ip, momentum n and winding w in the

[
a
b

]
-
[

a
b

]
sector34 is

〈
V[ a

b ]
p,n,w

〉

D⋆

=
ΦD⋆(j, n,w;

[
a
b

]
)

|z − z̄|∆p,n,w;a
, (B.1)

where ∆j,n,w;a is the scaling dimension of the primary field and D⋆ the boundary condition

of interest.

D0-branes On the supersymmetric cigar there are (including the fermionic contribution)

four D0-branes with boundary states |D0;
[a

b

]
〉 that obey B-type boundary conditions. The

one-point functions of primary fields on the disc with D0-boundary conditions are35

ΦD0;[a
b ]

(
p, n,w;

[
a′

b′

])
=

= δn,0δ
(2)
a′,bδ

(2)
b′,a k− 1

2 (−)w(a−1)e−
iπab

2 ν−ip Γ(1
2 + ip + kw

2 + b
2)Γ(1

2 + ip − kw
2 − b

2 )

Γ(2ip)Γ(1 + 2ip
k )

, (B.2)

34As usual
ˆ

0
0

˜

=NS,
ˆ

0
1

˜

= ÑS,
ˆ

1
0

˜

= R,
ˆ

1
1

˜

= R̃.
35D0-branes couple both to continuous and discrete primary fields. We present here only the one-point

functions of continuous states, which by definition have j = 1
2

+ ip, p ∈ R.
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where ν =
Γ(1− 1

k
)

Γ(1+ 1
k
)
.

D2-branes There are similarly four fermionic types of D2-branes with boundary states

|D2;P,M ;
[ a

b

]
〉 that obey B-type boundary conditions. They are labeled by a continuous

parameter P ∈ R≥0 and a half-integer M and exhibit the one-point functions

ΦD2;P,M ;[a
b ]

(
p, n,w;

[
a′

b′

])
= δn,0δ

(2)
a′,bδ

(2)
b′,a

√
2

k
(−)we−2πiMwe−

iπab
2 ν−ip cos

(
4πpP

k

)
×

× Γ(−2ip)Γ(1 − 2ip
k )

Γ(1
2 − ip + kw

2 + b
2 )Γ(1

2 − ip − kw
2 − b

2 )
. (B.3)

There are no couplings to discrete states in this case.

D1-branes Finally, there are four fermionic types of D1-branes with boundary states

|D1; ρ̂, φ̂;
[a

b

]
〉 (ρ̂ ∈ R≥0, φ̂ ∈ [0, 2π)) that obey A-type boundary conditions. The corre-

sponding one-point functions on the disc are

ΦD1;ρ̂,φ̂;[a
b ]

(
p, n,w;

[
a′

b′

])
= δw,0δ

(2)
a′,bδ

(2)
b′,a

1√
2
einφ̂ν−ip

(
e2iρ̂p + (−)ne−2iρ̂p

)
×

× Γ(−2ip)Γ(1 − 2ip
k )

Γ(1
2 − ip + n

2 + b
2)Γ(1

2 − ip − n
2 − b

2)
. (B.4)

There are no couplings to discrete states in this case either.

C. The P-matrix of unextended and extended characters

In this appendix we determine the modular transformation properties of the hatted identity

representation characters under the P modular transformation

τ = − 1

4it
+

1

2
−→ τ̃ = it +

1

2
.

The results presented here are instrumental in the modular bootstrap approach of section 4.

We start with the hatted unextended character that appears in the open string spec-

trum of the D0-brane. Explicitly this character reads

ĉhI(r; τ)

[
a

b

]
= e−iπ(∆− c

24
)chI(r; τ +

1

2
)

[
a

b

]
. (C.1)

Using (A.5) one finds

ĉhI(r; τ)

[
a

b

]
= e

iπ
“

r+ 1
8
+ 1−a

2
− a2

8

”

ϑ
[a
b

]
(τ + 1

2 )

η3(τ + 1
2)

q
(r+ a

2 )2− 1
4

k ×

×
[

1

1 + eiπ(b+r+ a+1
2

)qr+ a+1
2

− 1

1 + eiπ(b+r+ a−1
2

)qr+ a−1
2

]
. (C.2)
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Next inspired by [73] we introduce ”Miki’s function”

I
[
a

b

]
(N,α, β; τ) ≡

∑

s∈Z+ a+1
2

e2πisα qβs+ N
2

s2

1 + (−)beiπsqs
. (C.3)

One can rewrite the hatted identity character in terms of Miki’s function as

ĉhI(r; τ, 0)

[
a

b

]
(r; τ) = e

iπ
“

r+ 1−a2

8
+ 1−a

2

”

ϑ
[
a
b

]
(τ + 1

2)

η3(τ + 1
2)

×

×
∫ 1

0
dα e−2iπαr

[
e−iπα(1+a) I

[
a

b

](
2

k
, α,−1

k
; τ

)
− eiπα(1−a) I

[
a

b

] (
2

k
, α,

1

k
; τ

)]
. (C.4)

The computation of the P-matrix elements of the identity character proceeds as follows.

First, let us take care of the bosonic and fermionic oscillators36

ϑ
[a
b

] (
− 1

4it + 1
2

)

η3
(
− 1

4it + 1
2

) =
1

2t
e

iπ
2

(a−b+1+ a−1
2

)
ϑ
[

a
a−b+1

] (
it + 1

2

)

η3
(
it + 1

2

) . (C.5)

Then it will be useful to compute the quantity I
[a
b

]
(N,α, β;− 1

4it ). Explicitly, we have

I
[
a

b

](
N,α, β;− 1

4it

)
=

∑

s∈Z+ a+1
2

e2πisα e−
π
2t

(βs+ N
2

s2)

1 + eiπ(s+b)e−
πs
2t

, (C.6)

which we find useful to re-express as

I
[
a

b

](
N,α, β;− 1

4it

)
= I+

[
a

b

](
N,α, β;− 1

4it

)
+ I−

[
a

b

] (
N,α, β;− 1

4it

)
(C.7)

with

I±
[
a

b

](
N,α, β;− 1

4it

)
=

∑

s∈2Z+ a±1
2

e2πisα e−
π
2t

(βs+ N
2

s2)

1 + eiπ(a+1
2

+b)e−
πs
2t

, (C.8)

Then we observe that we can recast I± as

I±
[
a

b

](
N,α, β;− 1

4it

)
(C.9)

= 2t

[∫ ∞−iǫ

−∞−iǫ
−

∫ ∞+iǫ

−∞+iǫ

]
e−2πβx+8πitx(α+ 1

4
)−4Nπtx2

dx

(e2πitx ∓ e−2πi(tx− a+1
4

))
(
1 ± eiπ(a+1

2
+b)e−2πx

) .

To evaluate the rhs of (C.9) in a different way we make use of the expansions

1

e2πitx ± e−2πi(tx− a+1
4

)
=

∞∑

n=0

e
iπn
2

(a∓1)e−2πitx(2n+1) , ℑx < 0 , (C.10a)

1

e2πitx ± e−2πi(tx− a+1
4

)
= e−

iπ
2

(a±1)
∞∑

n=0

e−
iπn
2

(a∓1)e2πitx(2n+1) , ℑx > 0 . (C.10b)

36For convenience we write the phase in front of the rhs in a simple way that is correct for a, b ∈ {0, 1}

but does not respect the periodicities of the ϑ-functions.
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After a few steps of algebra, defining q = e−2πt, we can show that

I±
[
a

b

](
N,α, β;− 1

4it

)
= 2t

∫ ∞

−∞

dx
∑

n∈Z

e
iπ
2

(a±1)n e−2πβx

1 ± (−)be
iπ
2

(a+1)e−2πx
q2Nx2−4ix(α−n

2
) .

(C.11)

Finally, shifting the contour of integration from the real line R to R+ i(α− n
2 )/N we obtain

1

2t
I±

[
a

b

](
N,α, β;− 1

4it

)
= Jcont,± + Jdisc,± (C.12)

with continuous contribution

Jcont,± =

∫ ∞

−∞

dx
∑

n∈Z

e
iπ
2

(a±1)n e−2πβ(x+i 2α−n
2N

)

1 ± (−)be
iπ
2

(a+1)e−2π(x+i 2α−n
2N

)
q2Nx2+ 2

N
(α−n

2
)2 (C.13)

and discrete contribution Jdisc,± that arises when we pick up the appropriate poles (this

will be computed later). We are now ready to assemble the data, dealing only with the

continuous pieces for the moment. By straightforward algebra we find

ĉhI

(
r;− 1

4it

)[
a

b

]
= eiπ(r+ 7

8
+ 3a

8
− b

2
)

∫ ∞

−∞

dP

∫ 1

0
dα e−2iπα(r+ a

2
) ×

×
∑

n∈Z

e
iπan

2

[
e

iπn
2

1 + (−)be
iπ
2

(a+1)e−π(P+i k
2
(2α−n))

+
e−

iπn
2

1 − (−)be
iπ
2

(a+1)e−π(P+i k
2
(2α−n))

]
×

× sinh π

(
P

k
− in

2

)
q

P2

k
+k(α−n

2 )
2 ϑ

[
a

a−b+1

] (
it + 1

2

)

η3
(
it + 1

2

) + discrete . (C.14)

Let us write n = −2ℓ − δ with δ = 0, 1. We consider first the term with δ = 0. One can

trade the summation over α and the sum over ℓ for an integral over m = k(ℓ + α) and fold

the integral over the P -axis:

1

k
eiπ(r+ 7

8
+ 3a

8
− b

2
)

∫ ∞

0
dP

∫ +∞

−∞

dm
q

P2+m2

k

η3
(
it + 1

2

) ϑ

[
a

a − b + 1

](
it +

1

2

)
×

× e−
2iπ
k

m(r+ a
2
) sinh 2πP sinh πP

k

cosh π
[
P + i(m − a

2 )
]
cosh π

[
P − i(m − a

2 )
] (C.15)

Consider now the term with δ = 1. We define also m = k(ℓ + 1
2 + α) and obtain the result

2 eiπ(b+r− 1
2
) 1

k
eiπ(r+ 7

8
+ 3a

8
− b

2
)

∫ ∞

0
dP

∫ +∞

−∞

dm
q

P2+m2

k

η3
(
it + 1

2

) ϑ

[
a

a − b + 1

](
it +

1

2

)
×

× e−
2iπ
k

m(r+ a
2
) cosh πP cos π

(
m − a

2

)
cosh πP

k

cosh π
[
P + i(m − a

2 )
]
cosh π

[
P − i(m − a

2 )
] (C.16)
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The full result can be recast as follows

ĉhI

[
a

b

](
r;− 1

4it

)
=

2

k
eiπ( 2a+1

4
+ b

2)
∫ ∞

0
dP

∫ ∞

−∞

dm × (C.17)

×e−
2iπ
k

m(r+ a
2
) cosh πP

[
cos π

(
m − a

2

)
cosh πP

k + i(−)b+r sinh πP sinh πP
k

]

cosh π
[
P + i(m − a

2 )
]
cosh π

[
P − i(m − a

2 )
] ×

×e
iπ
8

(1−a2)
q

P2+m2

k ϑ
[ a
a−b+1

] (
it + 1

2

)

η3
(
it + 1

2

) + discrete .

In the last line we recognize an Ω-twisted character for continuous representations. It

allows to obtain the P-matrix elements of the identity to the continuous representations as

Pc; (P,m)[a
′

b′]
I; r[ab]

=
2

k
eiπ( 2a+1

4
+ b

2)δ
(2)
a,a′δ

(2)
a−b+1,b′ × (C.18)

× e−
2iπ
k

m(r+ a
2
) cosh πP

[
cos π

(
m − a

2

)
cosh πP

k + i(−)b+r sinhπP sinh πP
k

]

cosh π
[
P + i(m − a

2 )
]
cosh π

[
P − i(m − a

2 )
]

Discrete representations. While shifting the contour of integration over x from R to

R + i(α− n
2 )/N in eq. (C.11), one picks the residues of poles corresponding to the discrete

representations of the coset SL(2,R)/U(1) that appear in the closed string spectrum. To

make the identification of discrete characters easier, we rewrite the integral (C.14) as (with

P̃ = 2x):

2

k
eiπ(r+ 7+3a

8
− b

2
)
ϑ
[ a
a−b+1

] (
it + 1

2

)

η3
(
it + 1

2

)
∫

dP̃ dm e−
2iπm(r+ a

2 )

k ×

×
[
sinh

π(P̃ − im)

k
+ eiπ(b+r− 1

2
) cosh

π(P̃ − im)

k
e−π(P̃− ia

2
)

]
q

P̃ (P̃−2im)
k

1 + e−2π(P̃− ia
2

)
. (C.19)

Assuming first m > 0, the poles occur for

P̃ = i

(
υ +

1 + a

2

)
, 0 6 υ +

1 + a

2
6 m , υ ∈ Z . (C.20)

The sum over the residues reads

− 2

k
eiπ(r+ 7+3a

8
− b

2
)
ϑ
[ a
a−b+1

] (
it + 1

2

)

η3
(
it + 1

2

)
∑

υ>− 1+a
2

∫ ∞

υ+ 1+a
2

dm e−
2iπm(r+ a

2 )

k ×

×
[
sin

π(υ − m + 1+a
2 )

k
+ ieiπ(b+r+υ) cos

π(υ − m + 1+a
2 )

k

]
q

(υ+ 1+a
2 )(2m−υ− 1+a

2 )

k . (C.21)

To proceed further we make the slicing

m = j + υ +
a

2
+

kℓ

2
,

1

2
6 j 6

k + 1

2
and ℓ = 0, 1, . . . (C.22)

– 40 –



J
H
E
P
1
1
(
2
0
0
7
)
0
9
3

in terms of which we rewrite eqn (C.21) as

−2

k
eiπ(r+ 7+3a

8
− b

2
)
ϑ
[

a
a−b+1

] (
it + 1

2

)

η3
(
it + 1

2

)
∑

υ>− 1+a
2

∫ k+1
2

1
2

dj

∞∑

ℓ=0

e−
2iπ
k

(j+υ+ a
2
)(r+ a

2
) × (C.23)

×e−iπℓ(r+ a
2
)qℓ(υ+ a+1

2
)

[
sin

(
π(1

2 − j)

k
− πℓ

2

)
+ieiπ(b+r+υ) cos

(
π(1

2 − j)

k
−πℓ

2

)]
×

× q
−(j− 1

2 )2+(j+υ+ a
2 )2

k .

The case m < 0 will give a similar contribution with υ < −1+a
2 . We can now perform the

sum over ℓ (for which we need to consider separately the cases ℓ odd and ℓ even) obtaining

2

k
eiπ(r+ 2a−1

4
− b

2
)

∫ k+1
2

1
2

dj
∑

υ∈Z

e−
2iπ
k

(j+υ+ a
2
)(r+ a

2
) ×

×
[
sin

π(1
2 − j)

k
+ eiπ(b+r+υ+ 1

2
) cos

π(1
2 − j)

k

]
×

× e
iπ(1−a2)

8
q

−(j− 1
2 )2+(j+υ+ a

2 )2

k

1 + (−)beiπ(υ+ a+1
2

)qυ+ a+1
2

ϑ
[ a
a−b+1

] (
it + 1

2

)

η3
(
it + 1

2

) . (C.24)

In the last line we recognize the expression of the Ω-inserted discrete character ĉhd(j, υ)
[a
b

]
.

Note that both terms between square brackets in (C.24) are necessary in order to reconstruct

characters for the discrete representations by summing over ℓ. We get finally the P-matrix

elements for the discrete representations as:

Pd; (j,υ)[a
′

b′ ]
I; r[ab]

=
2

k
eiπ(r+ 2a−1

4
− b

2
) δ

(2)
a,a′δ

(2)
a−b+1,b′ ×

× e−
2iπ
k

(j+υ+ a
2
)(r+ a

2
)

[
sin

π(1
2 − j)

k
+ eiπ(b+r+υ+ 1

2
) cos

π(1
2 − j)

k

]
(C.25)

Results relevant for the OB- and ÕB-planes of the cigar. The character∑
r∈Z

ĉhI(r;− 1
4it)

[a
b

]
appears in the Möbius strip amplitude of D0-branes on the cigar

for the parity P2. Using the P-matrix elements computed above we can easily obtain the

modular transformation

∑

r∈Z

ĉhI

(
r;− 1

4it

)[
a

b

]
= 2 eiπ( a+1

4
+ b

2)
∫ ∞

0
dP

∑

w∈Z

(−)aw cosh πP ×

×
{

cos π
(
kw − a

2

)
cosh πP

k

cosh π
[
P +i(kw− a

2 )
]
cosh π

[
P−i(kw− a

2 )
] ĉhc(P, kw; it)

[
a

a−b+1

]
+

+
eiπ(b+1−a

2
) sinh πP sinh πP

k

cosh π
[
P +ik(w+ 1

2)− ia
2

]
cosh π

[
P−ik(w+ 1

2)+ ia
2 )

] ĉhc(P, k(w+
1

2
); it)

[
a

a−b+1

]}

+2eiπ(a+1
4

+ b
2
)

∫ k+1
2

1
2

dj
∑

w,υ∈Z

(−)aw

[
(−)υ cos

π(j − 1
2)

k
δ
(
j + υ +

a

2
− kw

)
+
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+eiπ(b+ 1−a
2

) sin
π(j − 1

2)

k
δ

(
j + υ +

a

2
− k(w +

1

2
)

) ]
ĉhd(j, υ; it)

[
a

a − b + 1

]
. (C.26)

We observe the absence of boundary terms at j = 1
2 or j = (k+1)

2 .37 Such terms would

jeopardize the modular bootstrap results since they are not present in the closed string

spectrum [24].

Similarly, the character
∑

r∈Z
(−)r ĉhI(r;− 1

4it)
[a
b

]
appears in the Möbius strip amplitude

of D0-branes for the parity P̃2. One can easily deduce from the above results the modular

transformation

∑

r∈Z

(−)r ĉhI

(
r;− 1

4it

)[
a

b

]
= 2 eiπ( 3a+2

8
+ b

2
)

∫ ∞

0
dP

∑

w∈Z

(−)aw cosh πP ×
{

e−
iπa
2 cos π

(
k(w + 1

2) − a
2

)
cosh πP

k

cosh π
[
P +i(k(w+ 1

2)− a
2 )

]
cosh π

[
P−i(k(w+ 1

2)− a
2 )

] ĉhc(P, k(w+
1

2
); it)

[
a

a−b+1

]

−i(−)b
sinhπP sinh πP

k

cosh π
[
P + i(kw − a

2 )
]
cosh π

[
P − i(kw − a

2 )
] ĉhc(P, kw; it)

[
a

a − b + 1

]}

+discrete . (C.27)

P-matrix for continuous representations The computation of the P-modular trans-

formation for the continuous representations is far less tedious. The result is:

ĉhc(p,m;− 1

4τ
)
[a

b

]
=

=
2

k
e

iπ
4

(1−a−2b)

∫ ∞

0
dp′

∫ ∞

−∞

dm′ e−2πimm′/k cos

(
2πpp′

k

)
ĉhc(p

′,m′; τ)

[
a

a − b + 1

]

(C.28)
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